A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime

被引:0
|
作者
Martinez de Velasco, A. [1 ]
Eikema, K. S. E. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Phys & Astron, LaserLaB, Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 12期
基金
荷兰研究理事会;
关键词
GENERATION; IONIZATION;
D O I
10.1063/5.0220970
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a simple and easy-to-implement Graphics Processing Unit (GPU)-accelerated routine to numerically simulate the propagation of ultrashort and intense laser pulses as they interact with a medium. The routine is based on the solution of Maxwell's wave equation in the frequency domain with an extended Crank-Nicolson algorithm implemented in the Nvidia CUDA C++ programming language. The main advantages of our method are its significant speed-up factor and its ease of implementation, requiring only basic knowledge of CUDA and C++. In this article, we review the strong-field wave equations to be solved and their discretization and demonstrate how to implement a numerical solver for them on an Nvidia GPU. We show the results of the simulation of a near-infrared laser pulse propagating through a partially ionized atomic gas and discuss the performance of our GPU-accelerated scheme. Compared to a na & iuml;ve central processing unit implementation of the same routine, our GPU-accelerated version is up to 198 times faster in standard regimes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Strong-field approximation for high-order harmonic generation in infrared laser pulses in the accelerated Kramers-Henneberger frame
    Madsen, Lars Bojer
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [42] Simulations of Light Propagation and Thermal Response in Biological Tissues Accelerated by Graphics Processing Unit
    Mesicek, Jakub
    Zdarsky, Jan
    Dolezal, Rafael
    Krejcar, Ondrej
    Kuca, Kamil
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2016, PT II, 2016, 9876 : 242 - 251
  • [43] Time- and frequency-resolved detection of atomic coherence in the regime of strong-field interaction with intense femtosecond laser pulses
    Konorov, S. O.
    Hepburn, J. W.
    Milner, V.
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [44] An efficient implementation of the graphics processing unit-accelerated single-step and simplified lattice Boltzmann method for irregular fluid domains
    Delgado-Gutierrez, Arturo
    Marzocca, Pier
    Cardenas-Fuentes, Diego
    Probst, Oliver
    Montesinos-Castellanos, Alejandro
    PHYSICS OF FLUIDS, 2022, 34 (12)
  • [45] Going faster to see further: graphics processing unit-accelerated value iteration and simulation for perishable inventory control using JAX
    Farrington, Joseph
    Wong, Wai Keong
    Li, Kezhi
    Utley, Martin
    ANNALS OF OPERATIONS RESEARCH, 2025,
  • [46] Parabolic-like nanoantennas fabrication by femtosecond laser pulses for strong-field plasmonics
    Gubko, M. A.
    Ionin, A. A.
    Kudryashov, S. L.
    Makarov, S. V.
    Rudenko, A. A.
    Seleznev, L. V.
    Sinitsyn, D. V.
    Treshin, I. V.
    Husinsky, W.
    Nathala, C. S. R.
    2014 INTERNATIONAL CONFERENCE LASER OPTICS, 2014,
  • [47] Interaction of ultrashort laser pulses with metal nanotips: a model system for strong-field phenomena
    Krueger, Michael
    Schenk, Markus
    Hommelhoff, Peter
    Wachter, Georg
    Lemell, Christoph
    Burgdoerfer, Joachim
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [48] Onset of Coulomb explosion in small silicon clusters exposed to strong-field laser pulses
    Sayres, S. G.
    Ross, M. W.
    Castleman, A. W., Jr.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [49] Strong-field photoelectron holography of atoms by bicircular two-color laser pulses
    Li, Min
    Jiang, Wei-Chao
    Xie, Hui
    Luo, Siqiang
    Zhou, Yueming
    Lu, Peixiang
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [50] Strong-field dissociation and ionization of H-2(+) using ultrashort laser pulses
    Gibson, GN
    Li, M
    Guo, C
    Neira, J
    PHYSICAL REVIEW LETTERS, 1997, 79 (11) : 2022 - 2025