A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime

被引:0
|
作者
Martinez de Velasco, A. [1 ]
Eikema, K. S. E. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Phys & Astron, LaserLaB, Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 12期
基金
荷兰研究理事会;
关键词
GENERATION; IONIZATION;
D O I
10.1063/5.0220970
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a simple and easy-to-implement Graphics Processing Unit (GPU)-accelerated routine to numerically simulate the propagation of ultrashort and intense laser pulses as they interact with a medium. The routine is based on the solution of Maxwell's wave equation in the frequency domain with an extended Crank-Nicolson algorithm implemented in the Nvidia CUDA C++ programming language. The main advantages of our method are its significant speed-up factor and its ease of implementation, requiring only basic knowledge of CUDA and C++. In this article, we review the strong-field wave equations to be solved and their discretization and demonstrate how to implement a numerical solver for them on an Nvidia GPU. We show the results of the simulation of a near-infrared laser pulse propagating through a partially ionized atomic gas and discuss the performance of our GPU-accelerated scheme. Compared to a na & iuml;ve central processing unit implementation of the same routine, our GPU-accelerated version is up to 198 times faster in standard regimes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] The mechanisms of strong-field control of chemical reactivity using tailored laser pulses
    Moore, NP
    Menkir, GM
    Markevitch, AN
    Graham, P
    Levis, RJ
    LASER CONTROL AND MANIPULATION OF MOLECULES, 2002, 821 : 207 - 220
  • [32] Graphics processing unit-accelerated bounding for branch-and-bound applied to a permutation problem using data access optimization
    Melab, N.
    Chakroun, I.
    Bendjoudi, A.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (16): : 2667 - 2683
  • [33] Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance
    Mano, Omer
    Clark, Damon A.
    PLOS ONE, 2017, 12 (01):
  • [34] Real-time multiview human pose tracking using graphics processing unit-accelerated particle swarm optimization
    Rymut, Boguslaw
    Kwolek, Bogdan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (06): : 1551 - 1563
  • [35] Strong-field photodetachment of H- by few-cycle laser pulses
    Shearer, S. F. C.
    Addis, C. R. J.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [36] Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses
    Levis, RJ
    Menkir, GM
    Rabitz, H
    SCIENCE, 2001, 292 (5517) : 709 - 713
  • [37] Central frequency of few-cycle laser pulses in strong-field processes
    Venzke, J.
    Joyce, T.
    Xue, Z.
    Becker, A.
    Jaron-Becker, A.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [38] Redistribution of vibrational population in a molecular ion with nonresonant strong-field laser pulses
    Bryan, W. A.
    Calvert, C. R.
    King, R. B.
    Nemeth, G. R. A. J.
    Alexander, J. D.
    Greenwood, J. B.
    Froud, C. A.
    Turcu, I. C. E.
    Springate, E.
    Newell, W. R.
    Williams, I. D.
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [39] Strong-field ionization of water by intense few-cycle laser pulses
    Mathur, D.
    Rajgara, F. A.
    Dharmadhikari, A. K.
    Dharmadhikari, J. A.
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [40] Graphics processing unit-accelerated finite-difference time-domain method for characterization of photonic crystal fibers
    Shulika, Oleksiy
    Guryev, Igor
    Gurieva, Natalia
    Sukhoivanov, Igor
    Andrade Lucio, Jose Amparo
    OPTICAL ENGINEERING, 2013, 52 (12)