Nuclear data uncertainty propagation in continuous-energy Monte Carlo calculations

被引:0
|
作者
Aures, Alexander [1 ]
Eisenstecken, Thomas [1 ]
Elts, Ekaterina [1 ]
Kilger, Robert [1 ]
机构
[1] Forschungszentrum Julich, Gesell Anlagen & Reaktorsicherheit GRS gGmbH, Boltzmannstr 14, D-85748 Garching, Germany
关键词
Nuclear data uncertainties; Uncertainty and sensitivity analysis; Random sampling; ENDF/B-VII.1;
D O I
10.1016/j.anucene.2024.110955
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The XSUSA method is a well-established stochastic sampling method for propagating nuclear data uncertainties through multigroup neutron transport calculations. To benefit from the advantages of Monte Carlo transport codes, namely modeling complex geometries and using continuous-energy nuclear data, an extension to XSUSA is proposed which allows perturbing continuous-energy nuclear data using multigroup nuclear data covariances. To verify the extension, sensitivity profiles of nuclear reactions are calculated via direct perturbation for the benchmark problems Jezebel, Godiva, LEU-SOL-THERM-002. The sensitivity profiles agree well with those obtained from TSUNAMI and Serpent. Secondly, the extension to XSUSA is applied to produce randomly sampled continuous-energy data libraries using the covariance libraries of SCALE 6.2. With these data libraries, samples of Serpent calculations are performed for Jezebel, Godiva, LEU-SOL-THERM-002, and the TMI-1 pin cell of the OECD/NEA LWR-UAM benchmark. For each problem, the multiplication factor uncertainty agrees well with the one from TSUNAMI.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Uncertainty Propagation and Quantification in Direct Simulation Monte Carlo Calculations of Hypersonic Reactive Cylinder Flows
    Chen, Hao
    Zhang, Bin
    Liu, Hong
    JOURNAL OF AERONAUTICS ASTRONAUTICS AND AVIATION, 2020, 52 (02): : 133 - 145
  • [42] Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters
    Alhassan, E.
    Sjostrand, H.
    Duan, J.
    Gustavsson, C.
    Koning, A. J.
    Pomp, S.
    Rochman, D.
    Osterlund, M.
    NUCLEAR DATA SHEETS, 2014, 118 : 542 - 544
  • [43] Sensitivity Analysis of Continuous-energy Nuclear Data and Its Application in AP1000
    Huang J.
    Cao L.
    He Q.
    Li J.
    Shen W.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2022, 56 (01): : 53 - 60
  • [44] Topological analysis in Monte Carlo simulation for uncertainty propagation
    Pakyuz-Charrier, Evren
    Jessell, Mark
    Giraud, Jeremie
    Lindsay, Mark
    Ogarko, Vitaliy
    SOLID EARTH, 2019, 10 (05) : 1663 - 1684
  • [45] Beyond Monte Carlo for the Initial Uncertainty Propagation Problem
    Yang, Chao
    Kumar, Mrinal
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5183 - 5188
  • [46] Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
    Perfetti, Christopher M.
    Rearden, Bradley T.
    SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,
  • [47] Development of Calculation Technique for Iterated Fission Probability and Reactor Kinetic Parameters Using Continuous-Energy Monte Carlo Method
    Nauchi, Yasushi
    Kameyama, Takanori
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2010, 47 (11) : 977 - 990
  • [48] Variational Monte Carlo calculations of nuclear and neutron matter
    Atav, Ü
    Ogul, R
    PHYSICA SCRIPTA, 2000, 61 (01): : 52 - 58
  • [50] A NEW MONTE CARLO CODE FOR NUCLEAR CRITICALITY CALCULATIONS
    Huayun, Shen
    Kan, Wang
    ICONE16: PROCEEDING OF THE 16TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2008, VOL 2, 2008, : 497 - 500