Nuclear data uncertainty propagation in continuous-energy Monte Carlo calculations

被引:0
|
作者
Aures, Alexander [1 ]
Eisenstecken, Thomas [1 ]
Elts, Ekaterina [1 ]
Kilger, Robert [1 ]
机构
[1] Forschungszentrum Julich, Gesell Anlagen & Reaktorsicherheit GRS gGmbH, Boltzmannstr 14, D-85748 Garching, Germany
关键词
Nuclear data uncertainties; Uncertainty and sensitivity analysis; Random sampling; ENDF/B-VII.1;
D O I
10.1016/j.anucene.2024.110955
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The XSUSA method is a well-established stochastic sampling method for propagating nuclear data uncertainties through multigroup neutron transport calculations. To benefit from the advantages of Monte Carlo transport codes, namely modeling complex geometries and using continuous-energy nuclear data, an extension to XSUSA is proposed which allows perturbing continuous-energy nuclear data using multigroup nuclear data covariances. To verify the extension, sensitivity profiles of nuclear reactions are calculated via direct perturbation for the benchmark problems Jezebel, Godiva, LEU-SOL-THERM-002. The sensitivity profiles agree well with those obtained from TSUNAMI and Serpent. Secondly, the extension to XSUSA is applied to produce randomly sampled continuous-energy data libraries using the covariance libraries of SCALE 6.2. With these data libraries, samples of Serpent calculations are performed for Jezebel, Godiva, LEU-SOL-THERM-002, and the TMI-1 pin cell of the OECD/NEA LWR-UAM benchmark. For each problem, the multiplication factor uncertainty agrees well with the one from TSUNAMI.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Benchmark analysis of experiments in fast critical assemblies using a continuous-energy Monte Carlo code MVP
    Nagaya, Y
    Nakagawa, M
    Mori, T
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1998, 35 (01) : 6 - 19
  • [32] Exact nuclear data uncertainty propagation for fusion neutronics calculations
    Rochman, D.
    Koning, A. J.
    van der Marck, S. C.
    FUSION ENGINEERING AND DESIGN, 2010, 85 (05) : 669 - 682
  • [33] Uncertainty Underprediction in Monte Carlo Eigenvalue Calculations
    Mervin, Brenden T.
    Mosher, Scott W.
    Wagner, John C.
    Maldonado, G. I.
    NUCLEAR SCIENCE AND ENGINEERING, 2013, 173 (03) : 276 - 292
  • [34] Development of a Generalized Perturbation Theory Method for Sensitivity Analysis Using Continuous-Energy Monte Carlo Methods
    Perfetti, Christopher M.
    Rearden, Bradley T.
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 182 (03) : 354 - 368
  • [35] A hybrid multigroup/continuous-energy Monte Carlo method for solving the Boltzmonn-Fokker-Planck equation
    Morel, JE
    Lorence, LJ
    Kensek, RP
    Halbleib, JA
    Sloan, DP
    NUCLEAR SCIENCE AND ENGINEERING, 1996, 124 (03) : 369 - 389
  • [36] Methodology of continuous-energy adjoint Monte Carlo for neutron, photon, and coupled neutron-photon transport
    Hoogenboom, JE
    NUCLEAR SCIENCE AND ENGINEERING, 2003, 143 (02) : 99 - 120
  • [37] Tilted plateau in nuclear collisions: Data, models and Monte Carlo calculations
    Fialkowski, K
    Wit, R
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2005, 31 (05) : 361 - 371
  • [38] Uncertainty Propagation in Monte Carlo Depletion Analysis
    Park, Ho Jin
    Shim, Hyung Jin
    Kim, Chang Hyo
    NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (03) : 196 - 208
  • [39] Uncertainty Propagation with Fast Monte Carlo Techniques
    Rochman, D.
    van der Marck, S. C.
    Koning, A. J.
    Sjostrand, H.
    Zwermann, W.
    NUCLEAR DATA SHEETS, 2014, 118 : 367 - 369
  • [40] Efficient Use of Monte Carlo: Uncertainty Propagation
    Rochman, D.
    Zwermann, W.
    van der Marck, S. C.
    Koning, A. J.
    Sjostrand, H.
    Helgesson, P.
    Krzykacz-Hausmann, B.
    NUCLEAR SCIENCE AND ENGINEERING, 2014, 177 (03) : 337 - 349