Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

被引:14
|
作者
Department of Mathematics and Physics, Guilin University of Technology, Guilin 541004, China [1 ]
不详 [2 ]
机构
来源
Chin. Phys. | 2007年 / 5卷 / 1246-1251期
关键词
Adaptive algorithms - Computer simulation - Nonlinear control systems - Parameter estimation - Uncertain systems;
D O I
10.1088/1009-1963/16/5/013
中图分类号
学科分类号
摘要
In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive technique, the globally generalized projective synchronization of two identical chaotic (hyperchaotic) systems is achieved by designing a novel nonlinear controller. Furthermore, the parameter identification is realized simultaneously. A sufficient condition for the globally projective synchronization is obtained. Finally, by taking the hyperchaotic Lü system as example, some numerical simulations are provided to demonstrate the effectiveness and feasibility of the proposed technique. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [41] Generalized binary function projective synchronization of chaotic systems with unknown parameters
    Li, Zhenbo
    Tang, Jiashi
    OPTIK, 2017, 137 : 101 - 107
  • [42] PROJECTIVE SYNCHRONIZATION OF A CLASS OF UNCERTAIN CHAOTIC SYSTEMS VIA FEEDBACK IMPULSIVE CONTROL
    Zhang, Xiaohua
    Ye, Xiang
    Liu, Qin
    Chen, Liping
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (06): : 2197 - 2209
  • [43] High precision fast projective synchronization in chaotic (hyperchaotic) systems
    Wang, Xingyuan
    Nian, Fuzhong
    Guo, Ge
    PHYSICS LETTERS A, 2009, 373 (20) : 1754 - 1761
  • [44] Generalized complex projective synchronization of chaotic complex systems with unknown parameters
    Ban, Jaepil
    Lee, Jinwoo
    Won, Sangchul
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 672 - 677
  • [45] Modified projective synchronization of uncertain fractional order hyperchaotic systems
    Bai, Jing
    Yu, Yongguang
    Wang, Sha
    Song, Yu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1921 - 1928
  • [46] Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity
    Sun, Yeong-Jeu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (10) : 3863 - 3870
  • [47] Coexistence of generalized synchronization and inverse generalized synchronization between chaotic and hyperchaotic systems
    Gasri, Ahlem
    Ouannas, Adel
    Ojo, Kayode S.
    Viet-Thanh Pham
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (04): : 583 - 598
  • [48] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Ma, Shao-Juan
    Shen, Qiong
    Hou, Jing
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 93 - 100
  • [49] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Shao-Juan Ma
    Qiong Shen
    Jing Hou
    Nonlinear Dynamics, 2013, 73 : 93 - 100
  • [50] DESIGN OF NEW SCHEME ADAPTIVE GENERALIZED HYBRID PROJECTIVE SYNCHRONIZATION FOR TWO DIFFERENT CHAOTIC SYSTEMS WITH UNCERTAIN PARAMETERS
    Ouahabi, Rabiaa
    Hamri, Nasr-Eddine
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (05): : 2361 - 2370