Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

被引:14
|
作者
Department of Mathematics and Physics, Guilin University of Technology, Guilin 541004, China [1 ]
不详 [2 ]
机构
来源
Chin. Phys. | 2007年 / 5卷 / 1246-1251期
关键词
Adaptive algorithms - Computer simulation - Nonlinear control systems - Parameter estimation - Uncertain systems;
D O I
10.1088/1009-1963/16/5/013
中图分类号
学科分类号
摘要
In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive technique, the globally generalized projective synchronization of two identical chaotic (hyperchaotic) systems is achieved by designing a novel nonlinear controller. Furthermore, the parameter identification is realized simultaneously. A sufficient condition for the globally projective synchronization is obtained. Finally, by taking the hyperchaotic Lü system as example, some numerical simulations are provided to demonstrate the effectiveness and feasibility of the proposed technique. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [31] Adaptive Generalized Projective Synchronization of a New Fractional Chaotic System with uncertain parameters
    Huang, Jiaoru
    Zhong, Kun
    Qian, Fucai
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2365 - 2369
  • [32] Adaptive function projective synchronization of unified chaotic systems with uncertain parameters
    Luo Runzi
    Wei Zhengmin
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1266 - 1272
  • [33] Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters
    Li, Zhenbo
    Zhao, Xiaoshan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2607 - 2615
  • [34] Modified projective synchronization of a hyperchaotic system with unknown and/or uncertain parameters
    Luo Runzi
    Deng Shucheng
    Wei Zhengmin
    JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (07) : 1099 - 1105
  • [35] Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters
    Wang, Cong
    Zhang, Hong-li
    Fan, Wen-hui
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 14 - 21
  • [36] SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC AND CHAOTIC SYSTEMS BY ADAPTIVE CONTROL
    Liu, Zhi-Yu
    Liu, Chia-Ju
    Ho, Ming-Chung
    Hung, Yao-Chen
    Hsu, Tzu-Fang
    Jiang, I-Min
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (12): : 3731 - 3736
  • [37] Modified projective synchronization between two different hyperchaotic systems with unknown or/and uncertain parameters
    Luo Runzi
    Deng Shucheng
    Wei Zhengmin
    PHYSICA SCRIPTA, 2010, 81 (01)
  • [38] Generalized Projective Synchronization for Different Hyperchaotic Dynamical Systems
    El-Dessoky, M. M.
    Saleh, E.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [39] Adaptive Generalized Function Projective Synchronization of A Class of New Chaotic Systems
    Jia, Nuo
    Wang, Tao
    Wang, Hui
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 646 - 650
  • [40] Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters
    Zhang, Gang
    Liu, Zengrong
    Zhang, Jianbao
    PHYSICS LETTERS A, 2008, 372 (04) : 447 - 450