Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

被引:14
|
作者
Department of Mathematics and Physics, Guilin University of Technology, Guilin 541004, China [1 ]
不详 [2 ]
机构
来源
Chin. Phys. | 2007年 / 5卷 / 1246-1251期
关键词
Adaptive algorithms - Computer simulation - Nonlinear control systems - Parameter estimation - Uncertain systems;
D O I
10.1088/1009-1963/16/5/013
中图分类号
学科分类号
摘要
In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive technique, the globally generalized projective synchronization of two identical chaotic (hyperchaotic) systems is achieved by designing a novel nonlinear controller. Furthermore, the parameter identification is realized simultaneously. A sufficient condition for the globally projective synchronization is obtained. Finally, by taking the hyperchaotic Lü system as example, some numerical simulations are provided to demonstrate the effectiveness and feasibility of the proposed technique. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters
    Jia Zhen
    Lu Jun-An
    Deng Guang-Ming
    Zhang Qun-Liao
    CHINESE PHYSICS, 2007, 16 (05): : 1246 - 1251
  • [2] Generalized Projective Synchronization for a class of Uncertain Chaotic Systems based on Parameters Identification
    Wang Yu-ye
    Xiao Fu-hai
    Chen Zhi-wei
    Xu Hong-zhen
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 809 - 813
  • [3] Function Projective Synchronization of a Class of Chaotic Systems with Uncertain Parameters
    Guan, Junbiao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [4] Generalized projective lag synchronization between different hyperchaotic systems with uncertain parameters
    Xiang-Jun Wu
    Hong-Tao Lu
    Nonlinear Dynamics, 2011, 66 : 185 - 200
  • [5] Generalized projective lag synchronization between different hyperchaotic systems with uncertain parameters
    Wu, Xiang-Jun
    Lu, Hong-Tao
    NONLINEAR DYNAMICS, 2011, 66 (1-2) : 185 - 200
  • [6] GENERALIZED PROJECTIVE SYNCHRONIZATION AND PARAMETERS ESTIMATION OF TWO NEW HYPERCHAOTIC SYSTEMS WITH FULLY UNCERTAIN PARAMETERS
    Zhu, Cong-Xu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (02): : 249 - 259
  • [7] Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
    Zhang, Fangfang
    Liu, Shutang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (02):
  • [8] Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters
    Liu, Jian
    Liu, Shutang
    Yuan, Chunhua
    NONLINEAR DYNAMICS, 2015, 79 (02) : 1035 - 1047
  • [9] Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters
    Jian Liu
    Shutang Liu
    Chunhua Yuan
    Nonlinear Dynamics, 2015, 79 : 1035 - 1047
  • [10] Generalized Function Projective Synchronization of Two Different Chaotic Systems with Uncertain Parameters
    Zhen, Bin
    Zhang, Yu
    APPLIED SCIENCES-BASEL, 2023, 13 (14):