Scaling limit of domino tilings on a pentagonal domain

被引:0
|
作者
Colomo, Filippo [1 ]
Pronko, Andrei G. [2 ]
机构
[1] INFN, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[2] Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
PHASE-TRANSITION; 6-VERTEX MODEL; BOUNDARY; THERMODYNAMICS; DIMERS;
D O I
10.1103/PhysRevE.110.054140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the six-vertex model at its free-fermion point with domain wall boundary conditions, which is equivalent to random domino tilings of the Aztec diamond. We compute the scaling limit of a particular nonlocal correlation function, essentially equivalent to the partition function for the domino tilings of a pentagon-shaped domain, obtained by cutting away a triangular region from a corner of the initial Aztec diamond. We observe a third-order phase transition when the geometric parameters of the obtained pentagonal domain are tuned to have the fifth side exactly tangent to the arctic ellipse of the corresponding initial model.
引用
收藏
页数:9
相关论文
共 50 条