Scaling limit of domino tilings on a pentagonal domain

被引:0
|
作者
Colomo, Filippo [1 ]
Pronko, Andrei G. [2 ]
机构
[1] INFN, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[2] Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
PHASE-TRANSITION; 6-VERTEX MODEL; BOUNDARY; THERMODYNAMICS; DIMERS;
D O I
10.1103/PhysRevE.110.054140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the six-vertex model at its free-fermion point with domain wall boundary conditions, which is equivalent to random domino tilings of the Aztec diamond. We compute the scaling limit of a particular nonlocal correlation function, essentially equivalent to the partition function for the domino tilings of a pentagon-shaped domain, obtained by cutting away a triangular region from a corner of the initial Aztec diamond. We observe a third-order phase transition when the geometric parameters of the obtained pentagonal domain are tuned to have the fifth side exactly tangent to the arctic ellipse of the corresponding initial model.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On functions which are limits of domino tilings
    Rémila, E
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 320 - 331
  • [22] DOMINO TILINGS OF RECTANGLES WITH FIXED WIDTH
    KLARNER, D
    POLLACK, J
    DISCRETE MATHEMATICS, 1980, 32 (01) : 45 - 52
  • [23] SYMMETRIES RELATED TO DOMINO TILINGS ON A CHESSBOARD
    Hujter, Mihaly
    Kaszanyitzky, Andras
    SYMMETRY-CULTURE AND SCIENCE, 2016, 27 (01): : 3 - 10
  • [24] Domino tilings of the expanded Aztec diamond
    Oh, Seungsang
    DISCRETE MATHEMATICS, 2018, 341 (04) : 1185 - 1191
  • [25] Domino tilings of Aztec diamonds and squares
    Kokhas K.P.
    Journal of Mathematical Sciences, 2009, 158 (6) : 868 - 894
  • [26] Pentagonal Series as Limit
    Bataille, M.
    Beckwith, D.
    Bracken, P.
    Bradie, B.
    Caro, N.
    Chapman, R.
    Chen, H.
    Cooper, J. E., III
    Dalyay, P. P.
    Eyeson, E. S.
    Gagola, S. M., Jr.
    Georghiou, C.
    Geupel, O.
    Habil, A.
    Herman, E. A.
    Howard, R.
    Kim, M.
    Kouba, O.
    Lang, W. C.
    Li, J.
    Linders, J. C.
    Lindsey, J. H., II
    Lossers, O. P.
    Martin, R.
    McCoy, T. L.
    Nandan, R.
    Omarjee, M.
    Perfetti, P.
    Pranesachar, C. R.
    Prasad, M. A.
    Sanyasi, D. N.
    Schwartz, R. K.
    Selvaraj, C. R.
    Selvaraj, S.
    Singer, N. C.
    Stenger, A.
    Stong, R.
    Tauraso, R.
    Tyler, D. B.
    Verriest, E. I.
    Vinuesa, J.
    Viteam, T.
    Vowe, M.
    Wildon, M.
    Stadler, Albert
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (07): : 653 - 653
  • [27] A new class of monohedral pentagonal spherical tilings with GeoGebra
    D'Azevedo Breda, Ana M.
    Dos Santos Dos Santos, Jose M.
    PORTUGALIAE MATHEMATICA, 2017, 74 (03) : 257 - 266
  • [28] Escher-like patterns from pentagonal tilings
    Rice, M
    M.C. ESCHER'S LEGACY: A CENTENNIAL CELEBRATION, 2003, : 244 - 251
  • [29] Domino Tilings of Cylinders: The Domino Group and Connected Components Under Flips
    Saldanha, Nicolau C.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (03) : 965 - 1002
  • [30] The lattice structure of the set of domino tilings of a polygon
    Rémila, E
    THEORETICAL COMPUTER SCIENCE, 2004, 322 (02) : 409 - 422