Temperature dependence of the electron quantum lifetime in InGaAs/GaAs double quantum well: Fukuyama-Abrahams mechanism

被引:0
|
作者
Gudina, S. V. [1 ]
Arapov, Yu. G. [1 ]
Neverov, V. N. [1 ]
Savelyev, A. P. [1 ]
Sandakov, N. S. [1 ]
Shelushinina, N. G. [1 ]
Yakunin, M. V. [1 ]
机构
[1] Russian Acad Sci, Inst Met Phys, Ural Branch, 18 S Kovalevskaya St, Ekaterinburg 620108, Russia
关键词
Double quantum wells; Quantum lifetime; Electron-electron interaction; Inelastic electron-electron scattering; TILTED MAGNETIC-FIELDS; N-INGAAS/GAAS; FERMI-SURFACE; MAGNETORESISTANCE; MAGNETOTRANSPORT; RESISTANCE; SCATTERING; RESONANCE; CONDUCTIVITY; TRANSPORT;
D O I
10.1016/j.physe.2024.116113
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the n-InGaAs/GaAs double quantum well, the suppression of resonant resistance by an in-plane magnetic field B <= 9 T in the temperature range T = (1.8-70) K is studied. The electron quantum lifetime, aq, is determined and the contributions of various scattering mechanisms to aq(T) are separated. It is shown that the observed nonmonotonic temperature dependence of the electron quantum lifetime is due to a combination of the interference contribution from the exchange electron-electron interaction in the ballistic regime and the inelastic electronelectron scattering in the diffusion regime (Fukuyama-Abrahams mechanism).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser
    Li J.-Y.
    Wang H.-L.
    Yang J.
    Cao C.-F.
    Zhao X.-Y.
    Yu W.-F.
    Gong Q.
    Faguang Xuebao/Chinese Journal of Luminescence, 2020, 41 (08): : 971 - 976
  • [32] On the temperature delocalization of carriers in GaAs/AlGaAs/InGaAs quantum-well heterostructures
    N. A. Pikhtin
    A. V. Lyutetskiy
    D. N. Nikolaev
    S. O. Slipchenko
    Z. N. Sokolova
    V. V. Shamakhov
    I. S. Shashkin
    A. D. Bondarev
    L. S. Vavilova
    I. S. Tarasov
    Semiconductors, 2014, 48 : 1342 - 1347
  • [33] On the Temperature Delocalization of Carriers in GaAs/AlGaAs/InGaAs Quantum-Well Heterostructures
    Pikhtin, N. A.
    Lyutetskiy, A. V.
    Nikolaev, D. N.
    Slipchenko, S. O.
    Sokolova, Z. N.
    Shamakhov, V. V.
    Shashkin, I. S.
    Bondarev, A. D.
    Vavilova, L. S.
    Tarasov, I. S.
    SEMICONDUCTORS, 2014, 48 (10) : 1342 - 1347
  • [34] Epitaxial structure dependence of the linewidth enhancement factor in GaAs and InGaAs quantum well lasers
    Stohs, J
    Gallant, DJ
    Bossert, DJ
    Brueck, SRJ
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES V, 1997, 2994 : 542 - 551
  • [35] Investigation of orientation dependence of piezoelectric effects in strained GaAs/InGaAs quantum well laser
    Saidi, Hosni
    Zitouni, Omar
    Ridene, Said
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 273
  • [36] POLARIZATION DEPENDENCE OF THE INTERBAND OPTICAL-ABSORPTION BY AN INGAAS QUANTUM-WELL IN GAAS
    ALESHKIN, VY
    ANSHON, AV
    KARPOVICH, IA
    SEMICONDUCTORS, 1993, 27 (08) : 742 - 744
  • [37] Carrier lifetime and modulation bandwidth of a quantum well AlGaAs/InGaP/GaAs/InGaAs transistor laser
    Feng, M.
    Holonyak, N., Jr.
    James, A.
    Cimino, K.
    Walter, G.
    Chan, R.
    APPLIED PHYSICS LETTERS, 2006, 89 (11)
  • [38] 1.58 μm InGaAs quantum well laser on GaAs
    Tangring, I.
    Ni, H. Q.
    Wu, B. P.
    Wu, D. H.
    Xiong, Y. H.
    Huang, S. S.
    Niu, Z. C.
    Wang, S. M.
    Lai, Z. H.
    Larsson, A.
    APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [39] In situ etching at InGaAs/GaAs quantum well interfaces
    Chirlias, E
    Massies, J
    Marcadet, X
    Guyaux, JL
    Grattepain, C
    JOURNAL OF CRYSTAL GROWTH, 2001, 222 (03) : 471 - 476