Scalable algorithms for physics-informed neural and graph networks

被引:0
|
作者
Shukla, Khemraj [1 ]
Xu, Mengjia [1 ,2 ]
Trask, Nathaniel [3 ]
Karniadakis, George E. [1 ]
机构
[1] Division of Applied Mathematics, Brown University, 182 George St, Providence,RI,02912, United States
[2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge,MA,02139, United States
[3] Center for Computing Research, Sandia National Laboratories, 1451 Innovation Pkwy SE #600, Albuquerque,NM,87123, United States
来源
Data-Centric Engineering | 2022年 / 3卷 / 06期
关键词
All Open Access; Gold; Green;
D O I
暂无
中图分类号
学科分类号
摘要
107
引用
收藏
相关论文
共 50 条
  • [21] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [22] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [23] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [24] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [25] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [26] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [27] Research on forward and inverse problems of structure based on physics-informed graph neural networks
    Zheng, Zhe
    Jiang, Wen-qiang
    Wang, Zhang-qi
    Xiao, Zi-ting
    Guo, Yu-cheng
    STRUCTURES, 2025, 74
  • [28] Physics-informed graph neural networks enhance scalability of variational nonequilibrium optimal control
    Yan, Jiawei
    Rotskoff, Grant M.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (07):
  • [29] Physics-Informed Graph Learning
    Peng, Ciyuan
    Xia, Feng
    Saikrishna, Vidya
    Liu, Huan
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 732 - 739
  • [30] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30