Dynamic Gaussian process regression for spatio-temporal data based on local clustering

被引:0
|
作者
Wang, Binglin [1 ]
Yan, Liang [1 ]
Rong, Qi [1 ]
Chen, Jiangtao [2 ]
Shen, Pengfei [2 ]
Duan, Xiaojun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian processes; Surrogate model; Spatio-temporal systems; Shock tube problem; Local modeling strategy; Time-based spatial clustering; ALGORITHM;
D O I
10.1016/j.cja.2024.06.026
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems. This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions. The proposed Dynamic Gaussian Process Regression (DGPR) consists of a sequence of local surrogate models related to each other. In DGPR, the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns, where the temporal information is used as the prior information for training the spatial-surrogate model. The DGPR is robust and especially suitable for the loosely coupled model structure, also allowing for parallel computation. The numerical results of the test function show the effectiveness of DGPR. Furthermore, the shock tube problem is successfully approximated under different phenomenon complexity. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [31] Parallel Clustering of Big Data of Spatio-temporal Trajectory
    Hu, Chunchun
    Kang, Xionghua
    Luo, Nianxue
    Zhao, Qiansheng
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 769 - 774
  • [32] Monotonic Gaussian Process for spatio-temporal disease progression modeling in brain imaging data
    Nader, Clement Abi
    Ayache, Nicholas
    Robert, Philippe
    Lorenzi, Marco
    NEUROIMAGE, 2020, 205
  • [33] Dynamic spatio-temporal models for spatial data
    Hefley, Trevor J.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Russell, Robin E.
    Walsh, Daniel P.
    SPATIAL STATISTICS, 2017, 20 : 206 - 220
  • [34] NONSEPARABLE DYNAMIC NEAREST NEIGHBOR GAUSSIAN PROCESS MODELS FOR LARGE SPATIO-TEMPORAL DATA WITH AN APPLICATION TO PARTICULATE MATTER ANALYSIS
    Datta, Abhirup
    Banerjee, Sudipto
    Finley, Andrew O.
    Hamm, Nicholas A. S.
    Schaap, Martijn
    ANNALS OF APPLIED STATISTICS, 2016, 10 (03): : 1286 - 1316
  • [35] Face Clustering in Videos : GMM-based Hierarchical Clustering using Spatio-temporal Data
    Kayal, Subhradeep
    2013 13TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2013, : 272 - 278
  • [36] A Clustering-Based Data Reduction for Very Large Spatio-Temporal Datasets
    Le-Khac, Nhien-An
    Bue, Martin
    Whelan, Michael
    Kechadi, M-Tahar
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2010), PT II, 2010, 6441 : 43 - 54
  • [37] A spatio-temporal dynamic regression model for extreme wind speeds
    Behzad Mahmoudian
    Mohsen Mohammadzadeh
    Extremes, 2014, 17 : 221 - 245
  • [38] A spatio-temporal dynamic regression model for extreme wind speeds
    Mahmoudian, Behzad
    Mohammadzadeh, Mohsen
    EXTREMES, 2014, 17 (02) : 221 - 245
  • [39] Classification of Gaussian spatio-temporal data with stationary separable covariances
    Karaliute, Marta
    Ducinskas, Kestutis
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 363 - 374
  • [40] Efficient Gaussian Process-Based Inference for Modelling Spatio-Temporal Dengue Fever
    Albinati, Julio
    Meira, Wagner, Jr.
    Pappa, Gisele L.
    Wilson, Andrew G.
    2017 6TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2017, : 61 - 66