Dynamic Gaussian process regression for spatio-temporal data based on local clustering

被引:0
|
作者
Wang, Binglin [1 ]
Yan, Liang [1 ]
Rong, Qi [1 ]
Chen, Jiangtao [2 ]
Shen, Pengfei [2 ]
Duan, Xiaojun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian processes; Surrogate model; Spatio-temporal systems; Shock tube problem; Local modeling strategy; Time-based spatial clustering; ALGORITHM;
D O I
10.1016/j.cja.2024.06.026
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems. This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions. The proposed Dynamic Gaussian Process Regression (DGPR) consists of a sequence of local surrogate models related to each other. In DGPR, the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns, where the temporal information is used as the prior information for training the spatial-surrogate model. The DGPR is robust and especially suitable for the loosely coupled model structure, also allowing for parallel computation. The numerical results of the test function show the effectiveness of DGPR. Furthermore, the shock tube problem is successfully approximated under different phenomenon complexity. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [21] Spatio-temporal functional regression on paleoecological data
    Bar-Hen, Avner
    Bel, Liliane
    Cheddadi, Rachid
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 53 - +
  • [22] Clustering and classification of spatio-temporal data using spatial dynamic panel data models
    Feo, Giuseppe
    Giordano, Francesco
    Milito, Sara
    Niglio, Marcella
    Parrella, Maria Lucia
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [23] Efficient spatio-temporal Gaussian regression via Kalman filtering
    Todescato, Marco
    Carron, Andrea
    Carli, Ruggero
    Pillonetto, Gianluigi
    Schenato, Luca
    AUTOMATICA, 2020, 118
  • [24] Spatio-Temporal Clustering of Traffic Data with Deep Embedded Clustering
    Asadi, Reza
    Regan, Amelia
    PREDICTGIS 2019: PROCEEDINGS OF THE 3RD ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON PREDICTION OF HUMAN MOBILITY (PREDICTGIS 2019), 2019, : 45 - 52
  • [25] Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and Density
    Li, Huanhuan
    Liu, Jingxian
    Wu, Kefeng
    Yang, Zaili
    Liu, Ryan Wen
    Xiong, Naixue
    IEEE ACCESS, 2018, 6 : 58939 - 58954
  • [26] ESTIMATING NEGLECTED TROPICAL DISEASES AND ENVIRONMENTAL RISK FACTORS WITH SPATIO-TEMPORAL GAUSSIAN PROCESS REGRESSION
    Tymeson, Hayley
    Reiner, Robert
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2018, 99 (04): : 243 - 243
  • [27] Spatio-temporal response robust parameter design based on Gaussian process model
    Zhai C.
    Wang J.
    Ma Y.
    Feng Z.
    Yang S.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2023, 43 (02): : 537 - 555
  • [28] Visual interactive clustering and querying of spatio-temporal data
    Sourina, O
    Liu, DQ
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 968 - 977
  • [29] Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data
    Wikle, CK
    Royle, JA
    ENVIRONMETRICS, 2005, 16 (05) : 507 - 522
  • [30] Functional distributional clustering using spatio-temporal data
    Venkatasubramaniam, A.
    Evers, L.
    Thakuriah, P.
    Ampountolas, K.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 909 - 926