Dynamic Gaussian process regression for spatio-temporal data based on local clustering

被引:0
|
作者
Wang, Binglin [1 ]
Yan, Liang [1 ]
Rong, Qi [1 ]
Chen, Jiangtao [2 ]
Shen, Pengfei [2 ]
Duan, Xiaojun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian processes; Surrogate model; Spatio-temporal systems; Shock tube problem; Local modeling strategy; Time-based spatial clustering; ALGORITHM;
D O I
10.1016/j.cja.2024.06.026
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems. This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions. The proposed Dynamic Gaussian Process Regression (DGPR) consists of a sequence of local surrogate models related to each other. In DGPR, the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns, where the temporal information is used as the prior information for training the spatial-surrogate model. The DGPR is robust and especially suitable for the loosely coupled model structure, also allowing for parallel computation. The numerical results of the test function show the effectiveness of DGPR. Furthermore, the shock tube problem is successfully approximated under different phenomenon complexity. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [1] Dynamic Gaussian process regression for spatio-temporal data based on local clustering
    Binglin WANG
    Liang YAN
    Qi RONG
    Jiangtao CHEN
    Pengfei SHEN
    Xiaojun DUAN
    Chinese Journal of Aeronautics, 2024, 37 (12) : 245 - 257
  • [2] Dynamic model-based clustering for spatio-temporal data
    Paci, Lucia
    Finazzi, Francesco
    STATISTICS AND COMPUTING, 2018, 28 (02) : 359 - 374
  • [3] Dynamic model-based clustering for spatio-temporal data
    Lucia Paci
    Francesco Finazzi
    Statistics and Computing, 2018, 28 : 359 - 374
  • [4] Complexity reduction for Gaussian Process Regression in spatio-temporal prediction
    Dinh-Mao Bui
    Thien Huynh-The
    Lee, Sungyoung
    Yoon, YongIk
    2015 INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS (ATC), 2015, : 326 - 331
  • [5] Spatio-temporal violent event prediction using Gaussian process regression
    Kupilik M.
    Witmer F.
    Journal of Computational Social Science, 2018, 1 (2): : 437 - 451
  • [6] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [7] Gaussian Process-based Spatio-Temporal Predictor
    Varga, Balazs
    ACTA POLYTECHNICA HUNGARICA, 2022, 19 (05) : 69 - 84
  • [8] The wrapped skew Gaussian process for analyzing spatio-temporal data
    Mastrantonio, Gianluca
    Gelfand, Alan E.
    Lasinio, Giovanna Jona
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (08) : 2231 - 2242
  • [9] The wrapped skew Gaussian process for analyzing spatio-temporal data
    Gianluca Mastrantonio
    Alan E. Gelfand
    Giovanna Jona Lasinio
    Stochastic Environmental Research and Risk Assessment, 2016, 30 : 2231 - 2242
  • [10] A Density-Based Clustering of Spatio-Temporal Data
    Zaghlool, Ehab
    ElKaffas, Saleh
    Saad, Amani
    NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, 2015, 354 : 41 - 50