SUPERLINEAR CONVERGENCE OF A SEMISMOOTH NEWTON METHOD FOR SOME OPTIMIZATION PROBLEMS WITH APPLICATIONS TO CONTROL THEORY

被引:0
|
作者
Casas, Eduardo [1 ]
机构
[1] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, ETSI Ind & Telecomunicac, Santander 39005, Spain
关键词
semismooth Newton method; optimal control; second order optimality conditions; strict complementarity condition;
D O I
10.1137/24M1644286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate a semismooth Newton method for an abstract optimization problem and prove its superlinear convergence by assuming that the no-gap second order sufficient optimality condition and the strict complementarity condition are fulfilled at the local minimizer. Many control problems fit this abstract formulation. In particular, we apply this abstract result to distributed control problems of a semilinear elliptic equation, to boundary bilinear control problems associated with a semilinear elliptic equation, and to distributed control of a semilinear parabolic equation.
引用
收藏
页码:3681 / 3698
页数:18
相关论文
共 50 条
  • [1] ON THE LOCAL CONVERGENCE OF THE SEMISMOOTH NEWTON METHOD FOR COMPOSITE OPTIMIZATION
    Hu, Jiang
    Tian, Tonghua
    Pan, Shaohua
    Wen, Zaiwen
    arXiv, 2022,
  • [2] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Milzarek, Andre
    Xiao, Xiantao
    Wen, Zaiwen
    Ulbrich, Michael
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (10) : 2151 - 2170
  • [3] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Andre Milzarek
    Xiantao Xiao
    Zaiwen Wen
    Michael Ulbrich
    Science China Mathematics, 2022, 65 : 2151 - 2170
  • [4] CONVERGENCE ANALYSIS OF THE SEMISMOOTH NEWTON METHOD FOR SPARSE CONTROL PROBLEMS GOVERNED BY SEMILINEAR ELLIPTIC EQUATIONS
    Casas, Eduardo
    Mateos, Mariano
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (06) : 3076 - 3090
  • [5] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Andre Milzarek
    Xiantao Xiao
    Zaiwen Wen
    Michael Ulbrich
    Science China(Mathematics), 2022, 65 (10) : 2151 - 2170
  • [6] Bilinear control of semilinear elliptic PDEs: convergence of a semismooth Newton method
    Casas, Eduardo
    Chrysafinos, Konstantinos
    Mateos, Mariano
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 143 - 163
  • [7] A semismooth Newton method for topology optimization
    Amstutz, Samuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1585 - 1595
  • [8] Achieving Globally Superlinear Convergence for Distributed Optimization with Adaptive Newton Method
    Zhang, Jiaqi
    You, Keyou
    Basar, Tamer
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 2329 - 2334
  • [9] A Semismooth Newton Multigrid Method for Constrained Elliptic Optimal Control Problems
    Liu, Jun
    Huang, Tingwen
    Xiao, Mingqing
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 397 - 405
  • [10] The Josephy–Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Alexey F. Izmailov
    Alexey S. Kurennoy
    Mikhail V. Solodov
    Set-Valued and Variational Analysis, 2013, 21 : 17 - 45