ON THE LOCAL CONVERGENCE OF THE SEMISMOOTH NEWTON METHOD FOR COMPOSITE OPTIMIZATION

被引:0
|
作者
Hu, Jiang [1 ]
Tian, Tonghua [2 ]
Pan, Shaohua [3 ]
Wen, Zaiwen [4 ]
机构
[1] Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston,MA,02114, United States
[2] School of Operations Research and Information Engineering, Cornell University, Ithaca,NY,14853, United States
[3] School of Mathematics, South China University of Technology, Guangzhou, China
[4] Beijing International Center for Mathematical Research, Center for Data Science, College of Engineering, Peking University, Beijing, China
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear equations
引用
收藏
相关论文
共 50 条
  • [1] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Milzarek, Andre
    Xiao, Xiantao
    Wen, Zaiwen
    Ulbrich, Michael
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (10) : 2151 - 2170
  • [2] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Andre Milzarek
    Xiantao Xiao
    Zaiwen Wen
    Michael Ulbrich
    Science China Mathematics, 2022, 65 : 2151 - 2170
  • [3] On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization
    Andre Milzarek
    Xiantao Xiao
    Zaiwen Wen
    Michael Ulbrich
    Science China(Mathematics), 2022, 65 (10) : 2151 - 2170
  • [4] A semismooth Newton method for topology optimization
    Amstutz, Samuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1585 - 1595
  • [5] The Josephy–Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Alexey F. Izmailov
    Alexey S. Kurennoy
    Mikhail V. Solodov
    Set-Valued and Variational Analysis, 2013, 21 : 17 - 45
  • [6] SUPERLINEAR CONVERGENCE OF A SEMISMOOTH NEWTON METHOD FOR SOME OPTIMIZATION PROBLEMS WITH APPLICATIONS TO CONTROL THEORY
    Casas, Eduardo
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (04) : 3681 - 3698
  • [7] Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments
    Fischer, Andreas
    Zemkoho, Alain B.
    Zhou, Shenglong
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05): : 1770 - 1804
  • [8] The Josephy-Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Izmailov, Alexey F.
    Kurennoy, Alexey S.
    Solodov, Mikhail V.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (01) : 17 - 45
  • [9] On the Analysis of Semismooth Newton-Type Methods for Composite Optimization
    Hu, Jiang
    Tian, Tonghua
    Pan, Shaohua
    Wen, Zaiwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)
  • [10] A STOCHASTIC SEMISMOOTH NEWTON METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
    Milzarek, Andre
    Xiao, Xiantao
    Cen, Shicong
    Wen, Zaiwen
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2916 - 2948