SUPERLINEAR CONVERGENCE OF A SEMISMOOTH NEWTON METHOD FOR SOME OPTIMIZATION PROBLEMS WITH APPLICATIONS TO CONTROL THEORY

被引:0
|
作者
Casas, Eduardo [1 ]
机构
[1] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, ETSI Ind & Telecomunicac, Santander 39005, Spain
关键词
semismooth Newton method; optimal control; second order optimality conditions; strict complementarity condition;
D O I
10.1137/24M1644286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate a semismooth Newton method for an abstract optimization problem and prove its superlinear convergence by assuming that the no-gap second order sufficient optimality condition and the strict complementarity condition are fulfilled at the local minimizer. Many control problems fit this abstract formulation. In particular, we apply this abstract result to distributed control problems of a semilinear elliptic equation, to boundary bilinear control problems associated with a semilinear elliptic equation, and to distributed control of a semilinear parabolic equation.
引用
收藏
页码:3681 / 3698
页数:18
相关论文
共 50 条
  • [31] Finding global solutions of some inverse optimal control problems using penalization and semismooth Newton methods
    Friedemann, Markus
    Harder, Felix
    Wachsmuth, Gerd
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (04) : 1025 - 1061
  • [32] Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems
    G. L. Zhou
    L. Caccetta
    Journal of Optimization Theory and Applications, 2008, 139
  • [33] An efficient semismooth Newton method for adaptive sparse signal recovery problems
    Ding, Yanyun
    Zhang, Haibin
    Li, Peili
    Xiao, Yunhai
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (02): : 262 - 288
  • [34] Superlinear convergence of the control reduced interior point method for PDE constrained optimization
    Anton Schiela
    Martin Weiser
    Computational Optimization and Applications, 2008, 39 : 369 - 393
  • [35] Finding global solutions of some inverse optimal control problems using penalization and semismooth Newton methods
    Markus Friedemann
    Felix Harder
    Gerd Wachsmuth
    Journal of Global Optimization, 2023, 86 : 1025 - 1061
  • [36] Superlinear convergence of the control reduced interior point method for PDE constrained optimization
    Schiela, Anton
    Weiser, Martin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 39 (03) : 369 - 393
  • [37] Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems
    Zhou, G. L.
    Caccetta, L.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (02) : 379 - 392
  • [38] An accelerated Newton method for equations with semismooth Jacobians and nonlinear complementarity problems
    Christina Oberlin
    Stephen J. Wright
    Mathematical Programming, 2009, 117 : 355 - 386
  • [39] AN INCREMENTAL QUASI-NEWTON METHOD WITH A LOCAL SUPERLINEAR CONVERGENCE RATE
    Mokhtari, Aryan
    Eisen, Mark
    Ribeiro, Alejandro
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4039 - 4043
  • [40] A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise
    Clason, Christian
    Jin, Bangti
    SIAM JOURNAL ON IMAGING SCIENCES, 2012, 5 (02): : 505 - U295