Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries

被引:1
|
作者
Xu, Yilong [1 ]
Shao, Fei [2 ,3 ]
Huang, Yongfeng [2 ,3 ]
Huang, Xudong [2 ]
Jiang, Fuyi [1 ]
Kang, Feiyu [2 ,3 ]
Liu, Wenbao [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Vanadium oxide cathode; Electrical activation; Fast activation; High capacity; V2O5;
D O I
10.1016/j.jcis.2024.12.162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy. By applying a carefully designed precycling charging protocol to NH4+-intercalated vanadium oxide (VON), we achieved activation speeds, reaching peak capacity within just several to 25 cycles-even under high current densities. The electrochemically activated material (E-VON) demonstrates performance metrics: delivering a high specific capacity of 359.1 mAh g-1 at 0.1 A g-1 , maintaining a rate capability of 155.5 mAh g-1 at 10 A g-1 , and showing cycling stability. The electrical activation process enhances ion transport within the VON structure and triggers a Zn2+/H+ coinsertion mechanism during cycling. This mechanism is intricately linked to the reversible formation and dissolution of a basic zinc sulfonate by-product, offering new insights into charge storage processes within vanadium-based AZIB cathodes. Our comprehensive characterization revealed how this activation strategy fundamentally transforms the structure and electrochemical behavior of materials, providing a practical pathway to overcome the longstanding limitations of traditional vanadium oxide cathodes. This study focuses on rapidly activating cathode materials, advancing the development of high-performance AZIBs.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [31] Intercalation design of layered vanadium phosphate based cathode material towards high-performance aqueous zinc-ion batteries
    Li, Yan
    Li, Wenxin
    Chen, Hongming
    Liu, Zijin
    Li, Xue
    Zhou, Dan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 974
  • [32] Distorting Local Structures to Modulate Ligand Fields in Vanadium Oxide for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Heng
    Yang, Long
    Shen, Ting
    Li, Changyuan
    Kang, Te
    Niu, Huanhuan
    Huang, Wei-Hsiang
    Chang, Chun-Chi
    Yang, Menghao
    Cao, Guozhong
    Liu, Chaofeng
    ACS NANO, 2025, 19 (09) : 9132 - 9143
  • [33] Polyaniline-Intercalated Vanadium Dioxide Nanoflakes for High-Performance Aqueous Zinc Ion Batteries
    Yuan, Xin
    Nie, Yanguang
    Zou, Tong
    Deng, Chuanlei
    Zhang, Youpeng
    Wang, Zanyao
    Wang, Jicheng
    Zhang, Chengliang
    Ye, Enjia
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11): : 13692 - 13701
  • [34] Oxygen vacancies and N-doping in organic-inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries
    Zhang, Feng
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Dong, Wentao
    Sang, Yuanhua
    Jiang, Hechun
    Li, Wenzhi
    Liu, Hong
    Wang, Shuhua
    INFOMAT, 2022, 4 (11)
  • [35] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [36] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [37] Porous cubic MnCo 2 O 4 as a high-performance cathode material for aqueous zinc-ion batteries
    Wu, Yujuan
    Hu, Yingying
    Zhao, Pei
    Zhang, Huihui
    Wang, Ruilin
    Mao, Yiyang
    Wang, Mengbo
    Yang, Ziwen
    Zhang, Xinlei
    Ding, Kun
    Guo, Yong
    Zhang, Qianjun
    Xu, Lianyi
    Wang, Baofeng
    SOLID STATE IONICS, 2024, 411
  • [38] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [39] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [40] Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries
    Jin, Tao
    Ye, Xiling
    Chen, Zhuo
    Bai, Shuai
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4729 - 4740