Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries

被引:1
|
作者
Xu, Yilong [1 ]
Shao, Fei [2 ,3 ]
Huang, Yongfeng [2 ,3 ]
Huang, Xudong [2 ]
Jiang, Fuyi [1 ]
Kang, Feiyu [2 ,3 ]
Liu, Wenbao [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Vanadium oxide cathode; Electrical activation; Fast activation; High capacity; V2O5;
D O I
10.1016/j.jcis.2024.12.162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy. By applying a carefully designed precycling charging protocol to NH4+-intercalated vanadium oxide (VON), we achieved activation speeds, reaching peak capacity within just several to 25 cycles-even under high current densities. The electrochemically activated material (E-VON) demonstrates performance metrics: delivering a high specific capacity of 359.1 mAh g-1 at 0.1 A g-1 , maintaining a rate capability of 155.5 mAh g-1 at 10 A g-1 , and showing cycling stability. The electrical activation process enhances ion transport within the VON structure and triggers a Zn2+/H+ coinsertion mechanism during cycling. This mechanism is intricately linked to the reversible formation and dissolution of a basic zinc sulfonate by-product, offering new insights into charge storage processes within vanadium-based AZIB cathodes. Our comprehensive characterization revealed how this activation strategy fundamentally transforms the structure and electrochemical behavior of materials, providing a practical pathway to overcome the longstanding limitations of traditional vanadium oxide cathodes. This study focuses on rapidly activating cathode materials, advancing the development of high-performance AZIBs.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [21] Cr3+ pre-intercalated hydrated vanadium oxide as an excellent performance cathode for aqueous zinc-ion batteries
    Zhang, Yaru
    Zhao, Lina
    Chen, Aibing
    Sun, Jie
    FUNDAMENTAL RESEARCH, 2021, 1 (04): : 418 - 424
  • [22] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [23] Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries
    Yu, Liangmin
    Yamauchi, Yusuke
    Wang, Jie
    Pang, Zhibin
    Ding, Bing
    Wang, Yanjian
    Xu, Li
    Zhou, Long
    Jiang, Xiaohui
    Yan, Xuefeng
    Hill, Jonathan P.
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [24] Electrochemical Activation in Vanadium Oxide with Rich Oxygen Vacancies for High-Performance Aqueous Zinc-Ion Batteries
    Liang, Fangan
    Chen, Min
    Zhang, Shuchao
    Zou, Zhengguang
    Ge, Chuanqi
    Jia, Shengkun
    Le, Shangwang
    Yu, Fagang
    Nong, Jinxia
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (13) : 5117 - 5128
  • [25] K+-regulated vanadium oxide heterostructure enables high-performance aqueous zinc-ion batteries
    Li, Haibing
    Zhu, Liyun
    Fan, Weijun
    Xiao, Yi
    Wu, Jiadong
    Mi, Hongyu
    Zhang, Fumin
    Yang, Linyu
    CRYSTENGCOMM, 2024, : 191 - 201
  • [26] Vanadium nitride oxide quantum dots modified nitrogen-doped graphene as cathode for high-performance aqueous zinc-ion batteries
    Chang, Jiaqi
    Fu, Xiaoping
    Liu, Jiahui
    Li, Caixuan
    Feng, Guodong
    Bao, Fuxi
    Guo, Wen
    JOURNAL OF POWER SOURCES, 2025, 639
  • [27] Recent advancements in cation-intercalated vanadium oxide cathode materials for zinc-ion batteries
    Li, Kunxuan
    Li, Rong
    Guan, Tiantian
    Wang, Lei
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Cao, Xiaoyu
    Zhu, Limin
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [28] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)
  • [29] Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries
    Zhang, Xiaotan
    Li, Jiangxu
    Ao, Huaisheng
    Liu, Dongyan
    Shi, Lei
    Wang, Chengming
    Zhu, Yongchun
    Qian, Yitai
    ENERGY STORAGE MATERIALS, 2020, 30 : 337 - 345
  • [30] Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries
    Yang, Fei
    Zhu, Yuanmin
    Xia, Yu
    Xiang, Shuhuai
    Han, Shaobo
    Cai, Chao
    Wang, Qi
    Wang, Yian
    Gu, Meng
    JOURNAL OF POWER SOURCES, 2020, 451