Enabling pathway design by multiplex experimentation and machine learning

被引:0
|
作者
Boob, Aashutosh Girish [1 ,3 ,4 ]
Chen, Junyu [2 ,3 ,4 ]
Zhao, Huimin [1 ,2 ,3 ,4 ]
机构
[1] Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana,IL,61801, United States
[2] Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana,IL,61801, United States
[3] Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana,IL,61801, United States
[4] DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana−Champaign, Urbana,IL,61801, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Cost effectiveness - Metabolic engineering - Metabolism - Molecules
引用
收藏
页码:70 / 87
相关论文
共 50 条
  • [21] Design optimization of additively manufactured sandwich beams through experimentation, machine learning, and imperialist competitive algorithm
    Teimouri, Amir
    Alinia, Maysam
    Kamarian, Saeed
    Saber-Samandari, Saeed
    Li, Guoqiang
    Song, Jung-il
    JOURNAL OF ENGINEERING DESIGN, 2024, 35 (03) : 320 - 337
  • [22] Enabling Simulation-Based Optimization Through Machine Learning: A Case Study on Antenna Design
    Testolina, Paolo
    Lecci, Mattia
    Rebato, Mattia
    Testolin, Alberto
    Gambini, Jonathan
    Flamini, Roberto
    Mazzucco, Christian
    Zorzi, Michele
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [23] Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning
    Dave, Adarsh
    Mitchell, Jared
    Kandasamy, Kirthevasan
    Wang, Han
    Burke, Sven
    Paria, Biswajit
    Poczos, Barnabas
    Whitacre, Jay
    Viswanathan, Venkatasubramanian
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (12):
  • [24] Experimentation Scenarios for Machine Learning-Based Resource Management
    Kostopoulos, Alexandros
    Chochliouros, Ioannis P.
    Vardakas, John
    Payaro, Miquel
    Barrachina, Sergio
    Rahman, Md Arifur
    Vinogradov, Evgenii
    Chanclou, Philippe
    Gonzalez, Roberto
    Klitis, Charalambos
    di Vimercati, Sabrina De Capitani
    Soumplis, Polyzois
    Varvarigos, Emmanuel
    Kritharidis, Dimitrios
    Chartsias, Kostas
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 : 120 - 133
  • [25] Machine learning for automated experimentation in scanning transmission electron microscopy
    Sergei V. Kalinin
    Debangshu Mukherjee
    Kevin Roccapriore
    Benjamin J. Blaiszik
    Ayana Ghosh
    Maxim A. Ziatdinov
    Anees Al-Najjar
    Christina Doty
    Sarah Akers
    Nageswara S. Rao
    Joshua C. Agar
    Steven R. Spurgeon
    npj Computational Materials, 9
  • [26] Machine learning for music genre: multifaceted review and experimentation with audioset
    Ramirez, Jaime
    Julia Flores, M.
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2020, 55 (03) : 469 - 499
  • [27] Machine learning for music genre: multifaceted review and experimentation with audioset
    Jaime Ramírez
    M. Julia Flores
    Journal of Intelligent Information Systems, 2020, 55 : 469 - 499
  • [28] Machine learning for automated experimentation in scanning transmission electron microscopy
    Kalinin, Sergei V.
    Mukherjee, Debangshu
    Roccapriore, Kevin
    Blaiszik, Benjamin J.
    Ghosh, Ayana
    Ziatdinov, Maxim A.
    Al-Najjar, Anees
    Doty, Christina
    Akers, Sarah
    Rao, Nageswara S.
    Agar, Joshua C.
    Spurgeon, Steven R.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [29] Adjoint method in machine learning: A pathway to efficient inverse design of photonic devices
    Kang, Chanik
    Seo, Dongjin
    Boriskina, Svetlana V.
    Chung, Haejun
    MATERIALS & DESIGN, 2024, 239
  • [30] Enabling scientific machine learning in MOOSE using Libtorch
    German, Peter
    Yushu, Dewen
    SOFTWAREX, 2023, 23