Unsupervised Hyperspectral and Multispectral Image Fusion With Deep Spectral-Spatial Collaborative Constraint

被引:3
|
作者
Yu, Haoyang [1 ]
Ling, Zhixin [2 ]
Zheng, Ke [2 ]
Gao, Lianru [1 ]
Li, Jiaxin [3 ,4 ]
Chanussot, Jocelyn [5 ,6 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing CHIRS, Dalian 116026, Peoples R China
[2] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252059, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[5] Univ Grenoble Alpes, Grenoble Inst Technol Grenoble INP, GIPSA Lab, CNRS, F-38000 Grenoble, France
[6] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Kernel; Spatial resolution; Feature extraction; Hyperspectral imaging; Deep learning; Accuracy; Radiometry; Matrix decomposition; Degradation; Dynamic convolution; hyperspectral and multispectral image fusion; hyperspectral image classification; unsupervised deep learning; ZY-1(02D); TARGET DETECTION; DECOMPOSITION;
D O I
10.1109/TGRS.2024.3472226
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The most cost-effective way to obtain a high spatial resolution hyperspectral image (HrHSI) is to fuse a low spatial resolution hyperspectral image (LrHSI) and corresponding high spatial resolution multispectral image (HrMSI). This article proposes a generalizable unsupervised deep fusion method based on spectral-spatial collaborative constraint to address LrHSI and HrMSI fusion task. First, in view of the limitations of the current spectral-spatial downsampled model, the group convolution enhancement (GCE) module is designed to eliminate the radiometric difference between the images to be fused. Second, to enhance the model's feature extraction ability, this article introduces the design of the spatial, channel, and filter 3-D attention factor dynamic convolutional kernel (SCFConv). In order to verify the proposed method, we compared and evaluated our method with traditional methods and unsupervised deep learning methods using both simulated and real onboard data, respectively. In the absence of HrHSI validation images in real scenarios, we evaluate the performance of different fusion models through classification results. The experimental results demonstrate the effectiveness of the proposed model and the practical value of the fusion results (the onboard data produced by ours are available at https://drive.google.com/drive/folders/ 1JLCCB6ld5R49HDLN5SsMISx1d0fuqRjO).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Spectral-Spatial Transformer for Hyperspectral Image Sharpening
    Chen, Lihui
    Vivone, Gemine
    Qin, Jiayi
    Chanussot, Jocelyn
    Yang, Xiaomin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [32] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [33] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] A Multiview Spectral-Spatial Feature Extraction and Fusion Framework for Hyperspectral Image Classification
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [35] Efficient Spectral-Spatial Fusion With Multiscale and Adaptive Attention for Hyperspectral Image Classification
    Wan, Xiaoqing
    Chen, Feng
    Gao, Weizhe
    He, Yupeng
    Liu, Hui
    Li, Zhize
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1196 - 1211
  • [36] Group Shuffle and Spectral-Spatial Fusion for Hyperspectral Image Super-Resolution
    Wang, Xinya
    Cheng, Yingsong
    Mei, Xiaoguang
    Jiang, Junjun
    Ma, Jiayi
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1223 - 1236
  • [37] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [38] Spectral-Spatial Dual Graph Unfolding Network forMultispectral and Hyperspectral Image Fusion
    Zhang, Kai
    Yan, Jun
    Zhang, Feng
    Ge, Chiru
    Wan, Wenbo
    Sun, Jiande
    Zhang, Huaxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [39] Spectral-Spatial Enhancement and Causal Constraint for Hyperspectral Image Cross-Scene Classification
    Dong, Lijia
    Geng, Jie
    Jiang, Wen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [40] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    REMOTE SENSING, 2020, 12 (09)