Unsupervised Hyperspectral and Multispectral Image Fusion With Deep Spectral-Spatial Collaborative Constraint

被引:3
|
作者
Yu, Haoyang [1 ]
Ling, Zhixin [2 ]
Zheng, Ke [2 ]
Gao, Lianru [1 ]
Li, Jiaxin [3 ,4 ]
Chanussot, Jocelyn [5 ,6 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing CHIRS, Dalian 116026, Peoples R China
[2] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252059, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[5] Univ Grenoble Alpes, Grenoble Inst Technol Grenoble INP, GIPSA Lab, CNRS, F-38000 Grenoble, France
[6] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Kernel; Spatial resolution; Feature extraction; Hyperspectral imaging; Deep learning; Accuracy; Radiometry; Matrix decomposition; Degradation; Dynamic convolution; hyperspectral and multispectral image fusion; hyperspectral image classification; unsupervised deep learning; ZY-1(02D); TARGET DETECTION; DECOMPOSITION;
D O I
10.1109/TGRS.2024.3472226
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The most cost-effective way to obtain a high spatial resolution hyperspectral image (HrHSI) is to fuse a low spatial resolution hyperspectral image (LrHSI) and corresponding high spatial resolution multispectral image (HrMSI). This article proposes a generalizable unsupervised deep fusion method based on spectral-spatial collaborative constraint to address LrHSI and HrMSI fusion task. First, in view of the limitations of the current spectral-spatial downsampled model, the group convolution enhancement (GCE) module is designed to eliminate the radiometric difference between the images to be fused. Second, to enhance the model's feature extraction ability, this article introduces the design of the spatial, channel, and filter 3-D attention factor dynamic convolutional kernel (SCFConv). In order to verify the proposed method, we compared and evaluated our method with traditional methods and unsupervised deep learning methods using both simulated and real onboard data, respectively. In the absence of HrHSI validation images in real scenarios, we evaluate the performance of different fusion models through classification results. The experimental results demonstrate the effectiveness of the proposed model and the practical value of the fusion results (the onboard data produced by ours are available at https://drive.google.com/drive/folders/ 1JLCCB6ld5R49HDLN5SsMISx1d0fuqRjO).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hyperspectral Image Classification Method Based on Targets Constraint and Spectral-Spatial Iteration
    Yu Chunyan
    Zhao Meng
    Song Meiping
    Li Sen
    Wang Yulei
    ACTA OPTICA SINICA, 2018, 38 (06)
  • [22] Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Mario Haut, Juan
    Fernandez-Beltran, Ruben
    Plaza, Javier
    Plaza, Antonio J.
    Pla, Filiberto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 740 - 754
  • [23] SURE-ERGAS: UNSUPERVISED DEEP LEARNING MULTISPECTRAL AND HYPERSPECTRAL IMAGE FUSION
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5623 - 5626
  • [24] A Deep Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15393 - 15406
  • [25] Multispectral and hyperspectral image fusion with spatial-spectral sparse representation
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    Wei, Qi
    INFORMATION FUSION, 2019, 49 : 262 - 270
  • [26] FUSION OF HYPERSPECTRAL AND MULTISPECTRAL IMAGE DATA FOR ENHANCEMENT OF SPECTRAL AND SPATIAL RESOLUTION
    Chakravortty, Somdatta
    Subramaniam, Pallavi
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 1099 - 1103
  • [27] Spatial Spectral Joint Correction Network for Hyperspectral and Multispectral Image Fusion
    Wang, Tingting
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 16 - 27
  • [28] Spectral-spatial feature fusion via dual-stream deep architecture for hyperspectral image classification
    Chen, Rong
    Li, Guanghui
    INFRARED PHYSICS & TECHNOLOGY, 2021, 119
  • [29] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [30] SPECTRAL-SPATIAL TRANSFORMER FOR HYPERSPECTRAL IMAGE SHARPENING
    Chen, Lihui
    Vivone, Gemine
    Qin, Jiayi
    Chanussot, Jocelyn
    Yang, Xiaomin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1452 - 1455