Unsupervised Hyperspectral and Multispectral Image Fusion With Deep Spectral-Spatial Collaborative Constraint

被引:3
|
作者
Yu, Haoyang [1 ]
Ling, Zhixin [2 ]
Zheng, Ke [2 ]
Gao, Lianru [1 ]
Li, Jiaxin [3 ,4 ]
Chanussot, Jocelyn [5 ,6 ]
机构
[1] Dalian Maritime Univ, Informat Sci & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing CHIRS, Dalian 116026, Peoples R China
[2] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252059, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[5] Univ Grenoble Alpes, Grenoble Inst Technol Grenoble INP, GIPSA Lab, CNRS, F-38000 Grenoble, France
[6] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Kernel; Spatial resolution; Feature extraction; Hyperspectral imaging; Deep learning; Accuracy; Radiometry; Matrix decomposition; Degradation; Dynamic convolution; hyperspectral and multispectral image fusion; hyperspectral image classification; unsupervised deep learning; ZY-1(02D); TARGET DETECTION; DECOMPOSITION;
D O I
10.1109/TGRS.2024.3472226
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The most cost-effective way to obtain a high spatial resolution hyperspectral image (HrHSI) is to fuse a low spatial resolution hyperspectral image (LrHSI) and corresponding high spatial resolution multispectral image (HrMSI). This article proposes a generalizable unsupervised deep fusion method based on spectral-spatial collaborative constraint to address LrHSI and HrMSI fusion task. First, in view of the limitations of the current spectral-spatial downsampled model, the group convolution enhancement (GCE) module is designed to eliminate the radiometric difference between the images to be fused. Second, to enhance the model's feature extraction ability, this article introduces the design of the spatial, channel, and filter 3-D attention factor dynamic convolutional kernel (SCFConv). In order to verify the proposed method, we compared and evaluated our method with traditional methods and unsupervised deep learning methods using both simulated and real onboard data, respectively. In the absence of HrHSI validation images in real scenarios, we evaluate the performance of different fusion models through classification results. The experimental results demonstrate the effectiveness of the proposed model and the practical value of the fusion results (the onboard data produced by ours are available at https://drive.google.com/drive/folders/ 1JLCCB6ld5R49HDLN5SsMISx1d0fuqRjO).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hierarchical Spectral-Spatial Transformer for Hyperspectral and Multispectral Image Fusion
    Zhu, Tianxing
    Liu, Qin
    Zhang, Lixiang
    REMOTE SENSING, 2024, 16 (22)
  • [2] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [3] Fusion of Spectral-Spatial Classifiers for Hyperspectral Image Classification
    Zhong, Shengwei
    Chen, Shuhan
    Chang, Chein-, I
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5008 - 5027
  • [4] Spectral-Spatial Interaction Network for Multispectral Image and Panchromatic Image Fusion
    Nie, Zihao
    Chen, Lihui
    Jeon, Seunggil
    Yang, Xiaomin
    REMOTE SENSING, 2022, 14 (16)
  • [5] Hyperspectral Image Spectral-Spatial Classification Method Based on Deep Adaptive Feature Fusion
    Mu, Caihong
    Liu, Yijin
    Liu, Yi
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [6] Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification
    Xu, Huilin
    He, Wei
    Zhang, Liangpei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Hyperspectral classification using deep fusion spectral-spatial features
    Liu, Yisen
    Zhou, Songbin
    Han, Wei
    Li, Chang
    Liu, Weixin
    Qiu, Zefan
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03)
  • [8] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Unsupervised Hyperspectral and Multispectral Image Blind Fusion Based on Deep Tucker Decomposition Network With Spatial-Spectral Manifold Learning
    Wang, He
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [10] Spectral-Spatial Feature Extraction Network With SSM-CNN for Hyperspectral-Multispectral Image Collaborative Classification
    Wang, Qingwang
    Fan, Xingxing
    Huang, Jiangbo
    Li, Shuai
    Shen, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17555 - 17566