Generalized βand (q,t)-deformed partition functions with W-representations and Nekrasov partition functions

被引:0
|
作者
Liu, Fan [1 ]
Wang, Rui [2 ]
Yang, Jie [1 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100084, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 07期
基金
中国国家自然科学基金;
关键词
HALL ALGEBRA; JACK;
D O I
10.1140/epjc/s10052-024-13040-w
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct the generalized beta and (q,t)-deformed partition functions through W representations,where the expansions are respectively with respect to the generalized Jack and Macdonald polynomials labeled by N-tuple of Young diagrams. We find that there are the profoundinterrelations between our deformed partition functions andthe 4dand 5dNekrasov partition functions. Since the corre-sponding Nekrasov partition functions can be given by vertex operators, the remarkable connection between our beta and(q,t)-deformed W-operators and vertex operators is revealed in this paper. In addition, we investigate the higher Hamilto-nians for the generalized Jack and Macdonald polynomials
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Vector partition functions and generalized dahmen and micchelli spaces
    De Concini, C.
    Procesi, C.
    Vergne, M.
    TRANSFORMATION GROUPS, 2010, 15 (04) : 751 - 773
  • [32] Generalized partition function for Bose statistics and thermodynamic functions
    Fan, HY
    Zou, H
    MODERN PHYSICS LETTERS B, 1999, 13 (29-30): : 1055 - 1062
  • [33] T(T)over-bardeformed partition functions
    Datta, Shouvik
    Jiang, Yunfeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [34] The Generalized Frobenius Problem via Restricted Partition Functions
    Woods, Kevin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (03):
  • [35] Vector partition functions and generalized dahmen and micchelli spaces
    C. De Concini
    C. Procesi
    M. Vergne
    Transformation Groups, 2010, 15 : 751 - 773
  • [36] On some partition functions
    Haberzetle, M
    AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 : 589 - 599
  • [37] CALCULATION OF PARTITION FUNCTIONS
    HUBBARD, J
    PHYSICAL REVIEW LETTERS, 1959, 3 (02) : 77 - 78
  • [38] On the parity of partition functions
    Nicolas, JL
    Sarkozy, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1995, 39 (04) : 586 - 597
  • [39] ON A CALCULUS OF PARTITION FUNCTIONS
    ANDREWS, GE
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (03) : 555 - &
  • [40] On the parity of partition functions
    Berndt, BC
    Yee, AJ
    Zaharescu, A
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (04) : 437 - 459