Generalized βand (q,t)-deformed partition functions with W-representations and Nekrasov partition functions

被引:0
|
作者
Liu, Fan [1 ]
Wang, Rui [2 ]
Yang, Jie [1 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100084, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 07期
基金
中国国家自然科学基金;
关键词
HALL ALGEBRA; JACK;
D O I
10.1140/epjc/s10052-024-13040-w
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct the generalized beta and (q,t)-deformed partition functions through W representations,where the expansions are respectively with respect to the generalized Jack and Macdonald polynomials labeled by N-tuple of Young diagrams. We find that there are the profoundinterrelations between our deformed partition functions andthe 4dand 5dNekrasov partition functions. Since the corre-sponding Nekrasov partition functions can be given by vertex operators, the remarkable connection between our beta and(q,t)-deformed W-operators and vertex operators is revealed in this paper. In addition, we investigate the higher Hamilto-nians for the generalized Jack and Macdonald polynomials
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Exact partition functions for deformed theories with flavours
    Beccaria, Matteo
    Fachechi, Alberto
    Macorini, Guido
    Martina, Luigi
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):
  • [22] On the parity of generalized partition functions II
    Jean-Louis Nicolas
    Periodica Mathematica Hungarica, 2002, 43 (1-2) : 177 - 189
  • [23] Generalized partition functions and interpolating statistics
    Borges, PF
    Boschi-Filho, H
    Farina, C
    MODERN PHYSICS LETTERS A, 1998, 13 (11) : 843 - 852
  • [24] Partition functions in statistical mechanics, symmetric functions, and group representations
    Balantekin, AB
    PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 066105
  • [25] Knot homologies and generalized quiver partition functions
    Ekholm, Tobias
    Kucharski, Piotr
    Longhi, Pietro
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (06)
  • [26] Knot homologies and generalized quiver partition functions
    Ekholm, Tobias
    Kucharski, Piotr
    Longhi, Pietro
    arXiv, 2021,
  • [27] An asymptotic formula for the logarithm of generalized partition functions
    Saito, Seiken
    RAMANUJAN JOURNAL, 2019, 49 (01): : 39 - 53
  • [28] Knot homologies and generalized quiver partition functions
    Tobias Ekholm
    Piotr Kucharski
    Pietro Longhi
    Letters in Mathematical Physics, 113
  • [29] An asymptotic formula for the logarithm of generalized partition functions
    Seiken Saito
    The Ramanujan Journal, 2019, 49 : 39 - 53
  • [30] Congruences for t-core partition functions
    Chen, Shi-Chao
    JOURNAL OF NUMBER THEORY, 2013, 133 (12) : 4036 - 4046