Generalized βand (q,t)-deformed partition functions with W-representations and Nekrasov partition functions

被引:0
|
作者
Liu, Fan [1 ]
Wang, Rui [2 ]
Yang, Jie [1 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100084, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 07期
基金
中国国家自然科学基金;
关键词
HALL ALGEBRA; JACK;
D O I
10.1140/epjc/s10052-024-13040-w
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct the generalized beta and (q,t)-deformed partition functions through W representations,where the expansions are respectively with respect to the generalized Jack and Macdonald polynomials labeled by N-tuple of Young diagrams. We find that there are the profoundinterrelations between our deformed partition functions andthe 4dand 5dNekrasov partition functions. Since the corre-sponding Nekrasov partition functions can be given by vertex operators, the remarkable connection between our beta and(q,t)-deformed W-operators and vertex operators is revealed in this paper. In addition, we investigate the higher Hamilto-nians for the generalized Jack and Macdonald polynomials
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On constraints of the (β-deformed) partition functions with W-representations
    Zhu, Yu-Sen
    Ji, Ren Cuo
    Li, Min-Li
    Wang, Rui
    PHYSICS LETTERS B, 2025, 861
  • [2] W-representations for multi-character partition functions and their β-deformations
    Wang, Lu-Yao
    Mishnyakov, V.
    Popolitov, A.
    Liu, Fan
    Wang, Rui
    PHYSICS LETTERS B, 2024, 851
  • [3] Superintegrability for (β-deformed) partition function hierarchies with W-representations
    Wang, Rui
    Liu, Fan
    Zhang, Chun-Hong
    Zhao, Wei-Zhong
    arXiv, 2022,
  • [4] Superintegrability for (β-deformed) partition function hierarchies with W-representations
    Wang, Rui
    Liu, Fan
    Zhang, Chun-Hong
    Zhao, Wei-Zhong
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (10):
  • [5] Gluing Nekrasov Partition Functions
    Qiu, Jian
    Tizzano, Luigi
    Winding, Jacob
    Zabzine, Maxim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (02) : 785 - 816
  • [6] Analyticity of Nekrasov Partition Functions
    Felder, Giovanni
    Mueller-Lennert, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (02) : 683 - 718
  • [7] Gluing Nekrasov Partition Functions
    Jian Qiu
    Luigi Tizzano
    Jacob Winding
    Maxim Zabzine
    Communications in Mathematical Physics, 2015, 337 : 785 - 816
  • [8] Analyticity of Nekrasov Partition Functions
    Giovanni Felder
    Martin Müller-Lennert
    Communications in Mathematical Physics, 2018, 364 : 683 - 718
  • [9] Generalized β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and (q, t)-deformed partition functions with W-representations and Nekrasov partition functions
    Fan Liu
    Rui Wang
    Jie Yang
    Wei-Zhong Zhao
    The European Physical Journal C, 84 (7):
  • [10] On W-representations of β- and q, t-deformed matrix models
    Morozov, A.
    PHYSICS LETTERS B, 2019, 792 : 205 - 213