A Robust Client Selection Mechanism for Federated Learning Environments

被引:0
|
作者
Veiga, Rafael [1 ]
Sousa, John [1 ]
Morais, Renan [1 ]
Bastos, Lucas [1 ]
Lobato, Wellington [1 ]
Rosário, Denis [1 ]
Cerqueira, Eduardo [1 ]
机构
[1] Institute of Technology, Federal University of Pará, Av. Perimetral, s/n, Guamá, PA, Belém,66075-110, Brazil
基金
巴西圣保罗研究基金会;
关键词
Adversarial machine learning - Differential privacy;
D O I
10.5753/jbcs.2024.4325
中图分类号
学科分类号
摘要
There is a exponential growth of data usage, specially due to the proliferation of connected applications with personalized models for different applications. In this context, Federated Learning (FL) emerges as a promising solution to enable collaborative model training while preserving the privacy and autonomy of participating clients. In a typical FL scenario, clients exhibit significant heterogeneity in terms of data distribution and hardware configurations. In this way, randomly sampling clients in each training round may not fully exploit the local updates from heterogeneous clients, resulting in lower model accuracy, slower convergence rate, degraded fairness, etc. In addition, malicious users could disseminate incorrect weights, which may decrease the accuracy of aggregated models and increase the time for convergence in FL. In this article, we introduce Resilience-aware Client Selection Mechanism for non-IID data and malicious clients in FL environment, called RICA. The proposed mechanism employs data size and entropy as criteria for client selection. In addition, RICA relies Centroid-Based Kernel Alignment (CKA) to identify and exclude potentially malicious clients. Our evaluation shows an improvement of 125% in Accuracy values in a scenario of malicious clients, which means the RICA+CKA demonstrates a more stable and resilient approach, reaching 90% accuracy in a few rounds compared to the default average approach, reached only around 30%. Therefore, results of the behavior of RICA+CKA in different datasets show the evaluation of different numbers of clients reaching around 90% while the other approach does not pass the 50% Accuracy. © 2024, Brazilian Computing Society. All rights reserved.
引用
收藏
页码:444 / 455
相关论文
共 50 条
  • [41] Towards Federated Learning with Byzantine-Robust Client Weighting
    Portnoy, Amit
    Tirosh, Yoav
    Hendler, Danny
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [42] A Secure and Fair Client Selection Based on DDPG for Federated Learning
    Wan, Tao
    Feng, Shun
    Liao, Weichuan
    Jiang, Nan
    Zhou, Jie
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [43] FedDCS: Federated Learning Framework based on Dynamic Client Selection
    Zou, Shutong
    Xiao, Mingjun
    Xu, Yin
    An, Baoyi
    Zheng, Jun
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 627 - 632
  • [44] Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
    Nishio, Takayuki
    Yonetani, Ryo
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [45] Adaptive client selection with personalization for communication efficient Federated Learning
    de Souza, Allan M.
    Maciel, Filipe
    da Costa, Joahannes B. D.
    Bittencourt, Luiz F.
    Cerqueira, Eduardo
    Loureiro, Antonio A. F.
    Villas, Leandro A.
    AD HOC NETWORKS, 2024, 157
  • [46] Online Client Selection for Asynchronous Federated Learning With Fairness Consideration
    Zhu, Hongbin
    Zhou, Yong
    Qian, Hua
    Shi, Yuanming
    Chen, Xu
    Yang, Yang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2493 - 2506
  • [47] Client Selection Based on Label Quantity Information for Federated Learning
    Ma, Jiahua
    Sun, Xinghua
    Xia, Wenchao
    Wang, Xijun
    Chen, Xiang
    Zhu, Hongbo
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [48] Welfare and fairness dynamics in federated learning: a client selection perspective
    Travadi, Yash
    Peng, Le
    Bi, Xuan
    Sun, Ju
    Yang, Mochen
    STATISTICS AND ITS INTERFACE, 2024, 17 (03) : 383 - 395
  • [49] Client Selection Algorithm in Cross-device Federated Learning
    Zhang, Rui-Lin
    Du, Jin-Hua
    Yin, Hao
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (12): : 5725 - 5740
  • [50] Optimal Client Selection of Federated Learning Based on Compressed Sensing
    Li, Qing
    Lyu, Shanxiang
    Wen, Jinming
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1679 - 1694