A Robust Client Selection Mechanism for Federated Learning Environments

被引:0
|
作者
Veiga, Rafael [1 ]
Sousa, John [1 ]
Morais, Renan [1 ]
Bastos, Lucas [1 ]
Lobato, Wellington [1 ]
Rosário, Denis [1 ]
Cerqueira, Eduardo [1 ]
机构
[1] Institute of Technology, Federal University of Pará, Av. Perimetral, s/n, Guamá, PA, Belém,66075-110, Brazil
基金
巴西圣保罗研究基金会;
关键词
Adversarial machine learning - Differential privacy;
D O I
10.5753/jbcs.2024.4325
中图分类号
学科分类号
摘要
There is a exponential growth of data usage, specially due to the proliferation of connected applications with personalized models for different applications. In this context, Federated Learning (FL) emerges as a promising solution to enable collaborative model training while preserving the privacy and autonomy of participating clients. In a typical FL scenario, clients exhibit significant heterogeneity in terms of data distribution and hardware configurations. In this way, randomly sampling clients in each training round may not fully exploit the local updates from heterogeneous clients, resulting in lower model accuracy, slower convergence rate, degraded fairness, etc. In addition, malicious users could disseminate incorrect weights, which may decrease the accuracy of aggregated models and increase the time for convergence in FL. In this article, we introduce Resilience-aware Client Selection Mechanism for non-IID data and malicious clients in FL environment, called RICA. The proposed mechanism employs data size and entropy as criteria for client selection. In addition, RICA relies Centroid-Based Kernel Alignment (CKA) to identify and exclude potentially malicious clients. Our evaluation shows an improvement of 125% in Accuracy values in a scenario of malicious clients, which means the RICA+CKA demonstrates a more stable and resilient approach, reaching 90% accuracy in a few rounds compared to the default average approach, reached only around 30%. Therefore, results of the behavior of RICA+CKA in different datasets show the evaluation of different numbers of clients reaching around 90% while the other approach does not pass the 50% Accuracy. © 2024, Brazilian Computing Society. All rights reserved.
引用
收藏
页码:444 / 455
相关论文
共 50 条
  • [31] Contribution-based Federated Learning client selection
    Lin, Weiwei
    Xu, Yinhai
    Liu, Bo
    Li, Dongdong
    Huang, Tiansheng
    Shi, Fang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 7235 - 7260
  • [32] FAIRNESS-AWARE CLIENT SELECTION FOR FEDERATED LEARNING
    Shi, Yuxin
    Liu, Zelei
    Shi, Zhuan
    Yu, Han
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 324 - 329
  • [33] VFedCS: Optimizing Client Selection for Volatile Federated Learning
    Shi, Fang
    Hu, Chunchao
    Lin, Weiwei
    Fan, Lisheng
    Huang, Tiansheng
    Wu, Wentai
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 24995 - 25010
  • [34] A Review of Client Selection Mechanisms in Heterogeneous Federated Learning
    Wang, Xiao
    Ge, Lina
    Zhang, Guifeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 761 - 772
  • [35] Client Selection in Federated Learning: Principles, Challenges, and Opportunities
    Fu, Lei
    Zhang, Huanle
    Gao, Ge
    Zhang, Mi
    Liu, Xin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 21811 - 21819
  • [36] Fast Heterogeneous Federated Learning with Hybrid Client Selection
    Song, Duanxiao
    Shen, Guangyuan
    Gao, Dehong
    Yang, Libin
    Zhou, Xukai
    Pan, Shirui
    Lou, Wei
    Zhou, Fang
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2006 - 2015
  • [37] Polaris: Accelerating Asynchronous Federated Learning With Client Selection
    Kang, Yufei
    Li, Baochun
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (02) : 446 - 458
  • [38] Federated learning energy saving through client selection
    Maciel, Filipe
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    Braun, Torsten
    PERVASIVE AND MOBILE COMPUTING, 2024, 103
  • [39] Client Selection and Resource Allocation via Graph Neural Networks for Efficient Federated Learning in Healthcare Environments
    Messinis, Sotirios C.
    Protonotarios, Nicholas E.
    Arapidis, Emmanouil
    Doulamis, Nikolaos
    17TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2024, 2024, : 606 - 612
  • [40] Client Selection Method for Federated Learning Based on Grouping Reinforcement Learning
    Li, Guo-ming
    Liu, Wai-xi
    Guo, Zhen-zheng
    Chen, Dao-xiao
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 327 - 332