The Role of Machine Learning in Enhancing Battery Management for Drone Operations: A Focus on SoH Prediction Using Ensemble Learning Techniques

被引:0
|
作者
Cetinus, Buesra [1 ]
Oyucu, Saadin [2 ]
Aksoz, Ahmet [3 ]
Bicer, Emre [1 ]
机构
[1] Sivas Univ Sci & Technol, Fac Engn & Nat Sci, Battery Res Lab, TR-58010 Sivas, Turkiye
[2] Adiyaman Univ, Fac Engn, Dept Comp Engn, TR-02040 Adiyaman, Turkiye
[3] Sivas Cumhuriyet Univ, Mobilers Team, TR-58050 Sivas, Turkiye
来源
BATTERIES-BASEL | 2024年 / 10卷 / 10期
关键词
UAV data analysis; machine learning; regression models; Ensemble Learning; Li-ion; OF-CHARGE ESTIMATION; LITHIUM-ION BATTERIES; GATED RECURRENT UNIT; HEALTH ESTIMATION; NEURAL-NETWORK; STATE; TEMPERATURE;
D O I
10.3390/batteries10100371
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study considers the significance of drones in various civilian applications, emphasizing battery-operated drones and their advantages and limitations, and highlights the importance of energy consumption, battery capacity, and the state of health of batteries in ensuring efficient drone operation and endurance. It also describes a robust testing methodology used to determine battery SoH accurately, considering discharge rates and using machine learning algorithms for analysis. Machine learning techniques, including classical regression models and Ensemble Learning methods, were developed and calibrated using experimental UAV data to predict SoH accurately. Evaluation metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) assess model performance, highlighting the balance between model complexity and generalization. The results demonstrated improved SoH predictions with machine learning models, though complexities may lead to overfitting challenges. The transition from simpler regression models to intricate Ensemble Learning methods is meticulously described, including an assessment of each model's strengths and limitations. Among the Ensemble Learning methods, Bagging, GBR, XGBoost, LightGBM, and stacking were studied. The stacking technique demonstrated promising results: for Flight 92 an RMSE of 0.03% and an MAE of 1.64% were observed, while for Flight 129 the RMSE was 0.66% and the MAE stood at 1.46%.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Enhancing groundwater quality prediction through ensemble machine learning techniques
    Karimi, Hadi
    Sahour, Soheil
    Khanbeyki, Matin
    Gholami, Vahid
    Sahour, Hossein
    Shahabi-Ghahfarokhi, Sina
    Mohammadi, Mohsen
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 197 (01)
  • [2] Enhancing Flood Prediction using Ensemble and Deep Learning Techniques
    Nti, Isaac Kofi
    Nyarko-Boateng, Owusu
    Boateng, Samuel
    Bawah, F. U.
    Agbedanu, P. R.
    Awarayi, N. S.
    Nimbe, P.
    Adekoya, A. F.
    Weyori, B. A.
    Akoto-Adjepong, Vivian
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 662 - 670
  • [3] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [4] Crop Yield Prediction Using Ensemble Machine Learning Techniques
    P. Kuppan
    V. Vishwa Priya
    SN Computer Science, 5 (8)
  • [5] Performance prediction of roadheaders using ensemble machine learning techniques
    Seker, Sadi Evren
    Ocak, Ibrahim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04): : 1103 - 1116
  • [6] Performance prediction of roadheaders using ensemble machine learning techniques
    Sadi Evren Seker
    Ibrahim Ocak
    Neural Computing and Applications, 2019, 31 : 1103 - 1116
  • [7] Enhanced slope stability prediction using ensemble machine learning techniques
    Yadav, Devendra Kumar
    Chattopadhyay, Swarup
    Tripathy, Debi Prasad
    Mishra, Pragyan
    Singh, Pritiranjan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] Performance prediction of impact hammer using ensemble machine learning techniques
    Ocak, Ibrahim
    Seker, Sadi Evren
    Rostami, Jamal
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 80 : 269 - 276
  • [9] Improved prediction of software defects using ensemble machine learning techniques
    Sweta Mehta
    K. Sridhar Patnaik
    Neural Computing and Applications, 2021, 33 : 10551 - 10562
  • [10] Improved prediction of software defects using ensemble machine learning techniques
    Mehta, Sweta
    Patnaik, K. Sridhar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10551 - 10562