Improved prediction of software defects using ensemble machine learning techniques

被引:28
|
作者
Mehta, Sweta [1 ]
Patnaik, K. Sridhar [1 ]
机构
[1] Birla Inst Technol, Dept Comp Sci & Engn, Ranchi 835315, Bihar, India
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 16期
关键词
Defect prediction; Dimension reduction; Data imbalance; Machine learning algorithms; XGBoost; Stacking ensemble classifier;
D O I
10.1007/s00521-021-05811-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software testing process is a crucial part in software development. Generally the errors made by developers get fixed at a later stage of the software development process. This increases the impact of the defect. To prevent this, defects need to be predicted during the initial days of the software development, which in turn helps in efficient utilization of the testing resources. Defect prediction process involves classification of software modules into defect prone and non-defect prone. This paper aims to reduce the impact of two major issues faced during defect prediction, i.e., data imbalance and high dimensionality of the defect datasets. In this research work, various software metrics are evaluated using feature selection techniques such as Recursive Feature Elimination (RFE), Correlation-based feature selection, Lasso, Ridge, ElasticNet and Boruta. Logistic Regression, Decision Trees, K-nearest neighbor, Support Vector Machines and Ensemble Learning are some of the algorithms in machine learning that have been used in combination with the feature extraction and feature selection techniques for classifying the modules in software as defect prone and non-defect prone. The proposed model uses combination of Partial Least Square (PLS) Regression and RFE for dimension reduction which is further combined with Synthetic Minority Oversampling Technique due to the imbalanced nature of the used datasets. It has been observed that XGBoost and Stacking Ensemble technique gave best results for all the datasets with defect prediction accuracy more than 0.9 as compared to algorithms used in the research work.
引用
收藏
页码:10551 / 10562
页数:12
相关论文
共 50 条
  • [1] Improved prediction of software defects using ensemble machine learning techniques
    Sweta Mehta
    K. Sridhar Patnaik
    Neural Computing and Applications, 2021, 33 : 10551 - 10562
  • [2] Prediction of Software Defects Using Automated Machine Learning
    Tanaka, Kazuya
    Monden, Akito
    Yucel, Zeynep
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 490 - 494
  • [3] Software reliability prediction using machine learning techniques
    Jaiswal A.
    Malhotra R.
    International Journal of System Assurance Engineering and Management, 2018, 9 (1) : 230 - 244
  • [4] Software Fault Prediction Using an RNN-Based Deep Learning Approach and Ensemble Machine Learning Techniques
    Borandag, Emin
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [5] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [6] Crop Yield Prediction Using Ensemble Machine Learning Techniques
    P. Kuppan
    V. Vishwa Priya
    SN Computer Science, 5 (8)
  • [7] Performance prediction of roadheaders using ensemble machine learning techniques
    Seker, Sadi Evren
    Ocak, Ibrahim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04): : 1103 - 1116
  • [8] Performance prediction of roadheaders using ensemble machine learning techniques
    Sadi Evren Seker
    Ibrahim Ocak
    Neural Computing and Applications, 2019, 31 : 1103 - 1116
  • [9] A Study on Software Effort Prediction Using Machine Learning Techniques
    Zhang, Wen
    Yang, Ye
    Wang, Qing
    EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, ENASE 2011, 2013, 275 : 1 - 15
  • [10] Software Defect Prediction Analysis Using Machine Learning Techniques
    Khalid, Aimen
    Badshah, Gran
    Ayub, Nasir
    Shiraz, Muhammad
    Ghouse, Mohamed
    SUSTAINABILITY, 2023, 15 (06)