The Role of Machine Learning in Enhancing Battery Management for Drone Operations: A Focus on SoH Prediction Using Ensemble Learning Techniques

被引:0
|
作者
Cetinus, Buesra [1 ]
Oyucu, Saadin [2 ]
Aksoz, Ahmet [3 ]
Bicer, Emre [1 ]
机构
[1] Sivas Univ Sci & Technol, Fac Engn & Nat Sci, Battery Res Lab, TR-58010 Sivas, Turkiye
[2] Adiyaman Univ, Fac Engn, Dept Comp Engn, TR-02040 Adiyaman, Turkiye
[3] Sivas Cumhuriyet Univ, Mobilers Team, TR-58050 Sivas, Turkiye
来源
BATTERIES-BASEL | 2024年 / 10卷 / 10期
关键词
UAV data analysis; machine learning; regression models; Ensemble Learning; Li-ion; OF-CHARGE ESTIMATION; LITHIUM-ION BATTERIES; GATED RECURRENT UNIT; HEALTH ESTIMATION; NEURAL-NETWORK; STATE; TEMPERATURE;
D O I
10.3390/batteries10100371
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study considers the significance of drones in various civilian applications, emphasizing battery-operated drones and their advantages and limitations, and highlights the importance of energy consumption, battery capacity, and the state of health of batteries in ensuring efficient drone operation and endurance. It also describes a robust testing methodology used to determine battery SoH accurately, considering discharge rates and using machine learning algorithms for analysis. Machine learning techniques, including classical regression models and Ensemble Learning methods, were developed and calibrated using experimental UAV data to predict SoH accurately. Evaluation metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) assess model performance, highlighting the balance between model complexity and generalization. The results demonstrated improved SoH predictions with machine learning models, though complexities may lead to overfitting challenges. The transition from simpler regression models to intricate Ensemble Learning methods is meticulously described, including an assessment of each model's strengths and limitations. Among the Ensemble Learning methods, Bagging, GBR, XGBoost, LightGBM, and stacking were studied. The stacking technique demonstrated promising results: for Flight 92 an RMSE of 0.03% and an MAE of 1.64% were observed, while for Flight 129 the RMSE was 0.66% and the MAE stood at 1.46%.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Ensemble Churn Prediction for Internet Service Provider with Machine Learning Techniques
    Goy, Gokhan
    Kolukisa, Burak
    Bahcevan, Cenk
    Gungor, Vehbi Cagri
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 248 - 253
  • [42] Enhancing Machine Learning Models for Path Loss Prediction Using Image Texture Techniques
    Sotiroudis, Sotirios P.
    Siakavara, Katherine
    Koudouridis, Georgios P.
    Sarigiannidis, Panagiotis
    Goudos, Sotirios K.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1443 - 1447
  • [43] Enhancing Compressive strength prediction of Roller Compacted concrete using Machine learning techniques
    Mai, Hai-Van Thi
    Trinh, Son Hoang
    Ly, Hai-Bang
    MEASUREMENT, 2023, 218
  • [44] Enhancing sepsis management through machine learning techniques: A review
    Ocampo-Quintero, N.
    Vidal-Cortes, P.
    del Rio Carbajo, L.
    Fdez-Riverola, F.
    Reboiro-Jato, M.
    Glez-Pena, D.
    MEDICINA INTENSIVA, 2022, 46 (03) : 140 - 156
  • [45] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242
  • [46] Machine Learning Prediction Techniques in the Optimization of Diagnostic Laboratories' Network Operations
    Regulski, Krzysztof
    Opalinski, Andrzej
    Swadzba, Jakub
    Sitkowski, Piotr
    Wasowicz, Pawel
    Kwietniewska-Smietana, Agnieszka
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [47] Ensemble Machine Learning Techniques Using Computer Simulation Data for Wild Blueberry Yield Prediction
    Seireg, Hayam R.
    Omar, Yasser M. K.
    Abd El-Samie, Fathi E.
    El-Fishawy, Adel S.
    Elmahalawy, Ahmed
    IEEE ACCESS, 2022, 10 : 64671 - 64687
  • [48] Development of a simulation result management and prediction system using machine learning techniques
    Lee, Ki Yong
    Suh, Young-Kyoon
    Cho, Kum Won
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (01) : 75 - 96
  • [49] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447
  • [50] Vulnerability Management using Machine Learning Techniques
    Shivani, T. J.
    Hegde, Ramakrishna
    Nagraj, Nagashree
    2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,