Influence of Parameter Variation in Analytical Preisach Model on Shape of Hysteresis Loop

被引:0
|
作者
Zhang, Huiying [1 ,2 ]
Shen, Yadong [2 ]
Tian, Mingxing [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Rail Transit Elect Automat Engn Lab Gansu Prov, Lanzhou 730070, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Magnetization; Magnetic hysteresis; Distribution functions; Analytical models; Parameter estimation; Market research; Magnetic devices; Computational modeling; Computational efficiency; Parametric statistics; Magnetization characteristic; analytical Preisach model; magnetic hysteresis loop; parametric effect analysis; WI-FI; INDOOR LOCALIZATION; DATASET;
D O I
10.1109/ACCESS.2024.3496790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Analytical Preisach Model (APM) describes the magnetization characteristics of materials with high accuracy and good universality, and the corresponding mathematical equations of the model are analytical expressions, which makes it very easy to solve and calculate. The distribution function parameters of APM are the main influencing factors on the shape of the hysteresis loop. In this paper, coercive force, remanence point, vertex magnetic induction intensity, area, rectangular ratio, and inclination of the hysteresis loop are used as comparative indicators for the shape of the hysteresis loop. The sensitivity analysis of the influence of distribution function parameter value changes on the hysteresis loop shape is conducted using the single factor variable method. The parameter values vary within the range of 0.9-1.1 times the baseline value, and when one parameter changes, the other parameters remain unchanged. By observing and analyzing the shape of the hysteresis loop before and after parameter changes and comparing the numerical values of the indicators, the law of the shape of the hysteresis loop changing with parameters can be obtained. The results show that some parameters have a low sensitivity to changes in the hysteresis loop shape, while others have a high sensitivity and cause significant variations. Furthermore, the direction of change in the shape indicator varies depending on the parameter. Some indicators increase with parameter increase, while others decrease. This information can be used to guide the correction of APM parameter values.
引用
收藏
页码:168975 / 168982
页数:8
相关论文
共 50 条
  • [41] GENERALIZATION OF THE VECTOR PREISACH HYSTERESIS MODEL
    FRIEDMAN, G
    JOURNAL OF APPLIED PHYSICS, 1991, 69 (08) : 4832 - 4834
  • [42] Wavelet implementation of Preisach model of hysteresis
    Yu, YH
    Xiao, ZC
    Lin, EB
    Naganathan, N
    SMART STRUCTURES AND MATERIALS 1999: MATHEMATICS AND CONTROL IN SMART STRUCTURES, 1999, 3667 : 776 - 784
  • [43] Modified Dynamic Preisach Model for Hysteresis
    Sunny, Mohammed R.
    Kapania, Rakesh K.
    AIAA JOURNAL, 2010, 48 (07) : 1523 - 1530
  • [44] Scalar Preisach Hysteresis Model Algorithm
    Manescu , Veronica
    Paltanea, Gheorghe
    Nemoianu, Iosif Vasile
    Ciuceanu, Radu Mircea
    PROCEEDINGS OF THE 6TH CONFERENCE ON THE ENGINEERING OF COMPUTER BASED SYSTEMS (ECBS 2019), 2020,
  • [45] Preisach model of magnetic hysteresis for ENDE
    Tomás, I
    Melikhov, YY
    Kadlecová, J
    Perevertov, OV
    ELECTROMAGNETIC NONDESTRUCTIVE EVALUATION (IV), 2000, 17 : 120 - 126
  • [46] Preisach based dynamic hysteresis model
    Hu, H
    Zhang, HS
    Ben Mrad, R
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 825 - 830
  • [47] A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials
    Kopfova, Jana
    Krejci, Pavel
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2011, 23 (02) : 125 - 137
  • [48] A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials
    Jana Kopfová
    Pavel Krejc̆í
    Continuum Mechanics and Thermodynamics, 2011, 23 : 125 - 137
  • [49] A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys
    Ktena, A
    Fotiadis, DI
    Spanos, PD
    Massalas, CV
    PHYSICA B, 2001, 306 (1-4): : 84 - 90
  • [50] Variation of the hysteresis loop with the Bouc–Wen model parameters
    Fayçal Ikhouane
    Jorge E. Hurtado
    José Rodellar
    Nonlinear Dynamics, 2007, 48 : 361 - 380