Influence of Parameter Variation in Analytical Preisach Model on Shape of Hysteresis Loop

被引:0
|
作者
Zhang, Huiying [1 ,2 ]
Shen, Yadong [2 ]
Tian, Mingxing [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Rail Transit Elect Automat Engn Lab Gansu Prov, Lanzhou 730070, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Magnetization; Magnetic hysteresis; Distribution functions; Analytical models; Parameter estimation; Market research; Magnetic devices; Computational modeling; Computational efficiency; Parametric statistics; Magnetization characteristic; analytical Preisach model; magnetic hysteresis loop; parametric effect analysis; WI-FI; INDOOR LOCALIZATION; DATASET;
D O I
10.1109/ACCESS.2024.3496790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Analytical Preisach Model (APM) describes the magnetization characteristics of materials with high accuracy and good universality, and the corresponding mathematical equations of the model are analytical expressions, which makes it very easy to solve and calculate. The distribution function parameters of APM are the main influencing factors on the shape of the hysteresis loop. In this paper, coercive force, remanence point, vertex magnetic induction intensity, area, rectangular ratio, and inclination of the hysteresis loop are used as comparative indicators for the shape of the hysteresis loop. The sensitivity analysis of the influence of distribution function parameter value changes on the hysteresis loop shape is conducted using the single factor variable method. The parameter values vary within the range of 0.9-1.1 times the baseline value, and when one parameter changes, the other parameters remain unchanged. By observing and analyzing the shape of the hysteresis loop before and after parameter changes and comparing the numerical values of the indicators, the law of the shape of the hysteresis loop changing with parameters can be obtained. The results show that some parameters have a low sensitivity to changes in the hysteresis loop shape, while others have a high sensitivity and cause significant variations. Furthermore, the direction of change in the shape indicator varies depending on the parameter. Some indicators increase with parameter increase, while others decrease. This information can be used to guide the correction of APM parameter values.
引用
收藏
页码:168975 / 168982
页数:8
相关论文
共 50 条
  • [21] Parameter identification and compensation of Preisach hysteresis in smart actuators
    Wang, Ping-Ping, 1600, Chinese Vibration Engineering Society (33):
  • [22] NUMERICAL APPROXIMATION OF THE PREISACH MODEL FOR HYSTERESIS
    VERDI, C
    VISINTIN, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (02): : 335 - 356
  • [23] Hysteresis compensation of AFM by Preisach model
    Jung, H
    Shim, JY
    Gweon, DG
    PROCEEDINGS OF THE THIRTEENTH ANNUAL MEETING OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 1998, : 538 - 541
  • [24] The Preisach model of hysteresis: fundamentals and applications
    Semenov, M. E.
    Borzunov, S., V
    Meleshenko, P. A.
    Sel'vesyuk, N., I
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [25] A MULTIDIMENSIONAL GENERALIZATION OF THE PREISACH MODEL FOR HYSTERESIS
    DAMLAMIAN, A
    VISINTIN, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (07): : 437 - 440
  • [26] Eddy current hysteresis and the Preisach model
    Mayergoyz, ID
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (04) : 1261 - 1263
  • [27] Parameter identification of hysteresis loop model for transformer core
    Li, Xiaoping
    Peng, Qingshun
    Li, Jinbao
    Wen, Xishan
    Lu, Hailiang
    Li, J. (lijinbao1987.com@163.com), 1600, Power System Technology Press (36): : 200 - 205
  • [28] Preisach modeling of piezoceramic and shape memory alloy hysteresis
    Hughes, D
    Wen, JT
    MATHEMATICS AND CONTROL IN SMART STRUCTURES: SMART STRUCTURES AND MATERIALS 1996, 1996, 2715 : 507 - 528
  • [29] On the reduced vector Preisach model of hysteresis
    Cardelli, E
    Della Torre, E
    Pinzaglia, E
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [30] ISOTROPIC VECTOR PREISACH MODEL OF HYSTERESIS
    MAYERGOYZ, ID
    FRIEDMAN, G
    JOURNAL OF APPLIED PHYSICS, 1987, 61 (08) : 4022 - 4024