CFRNet: Cross-Attention-Based Fusion and Refinement Network for Enhanced RGB-T Salient Object Detection

被引:0
|
作者
Deng, Biao [1 ,2 ]
Liu, Di [2 ]
Cao, Yang [2 ]
Liu, Hong [2 ]
Yan, Zhiguo [1 ]
Chen, Hu [2 ]
机构
[1] Dongfang Elect Autocontrol Engn Co LTD, Deyang 618000, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-T salient object detection; RGB-thermal fusion; cross-attention; fusion and refinement;
D O I
10.3390/s24227146
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Existing deep learning-based RGB-T salient object detection methods often struggle with effectively fusing RGB and thermal features. Therefore, obtaining high-quality features and fully integrating these two modalities are central research focuses. We developed an illumination prior-based coefficient predictor (MICP) to determine optimal interaction weights. We then designed a saliency-guided encoder (SG Encoder) to extract multi-scale thermal features incorporating saliency information. The SG Encoder guides the extraction of thermal features by leveraging their correlation with RGB features, particularly those with strong semantic relationships to salient object detection tasks. Finally, we employed a Cross-attention-based Fusion and Refinement Module (CrossFRM) to refine the fused features. The robust thermal features help refine the spatial focus of the fused features, aligning them more closely with salient objects. Experimental results demonstrate that our proposed approach can more accurately locate salient objects, significantly improving performance compared to 11 state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] SIA: RGB-T salient object detection network with salient-illumination awareness
    Song, Kechen
    Wen, Hongwei
    Ji, Yingying
    Xue, Xiaotong
    Huang, Liming
    Yan, Yunhui
    Meng, Qinggang
    OPTICS AND LASERS IN ENGINEERING, 2024, 172
  • [22] GOSNet: RGB-T salient object detection network based on Global Omnidirectional Scanning
    Jiang, Bochang
    Luo, Dan
    Shang, Zihan
    Liu, Sicheng
    NEUROCOMPUTING, 2025, 630
  • [23] Unidirectional RGB-T salient object detection with intertwined driving of encoding and fusion
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Yan, Yunhui
    Han, Yahong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [24] Transformer-based cross-modality interaction guidance network for RGB-T salient object detection
    Luo, Jincheng
    Li, Yongjun
    Li, Bo
    Zhang, Xinru
    Li, Chaoyue
    Chenjin, Zhimin
    He, Jingyi
    Liang, Yifei
    NEUROCOMPUTING, 2024, 600
  • [25] Modality-Induced Transfer-Fusion Network for RGB-D and RGB-T Salient Object Detection
    Chen, Gang
    Shao, Feng
    Chai, Xiongli
    Chen, Hangwei
    Jiang, Qiuping
    Meng, Xiangchao
    Ho, Yo-Sung
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1787 - 1801
  • [26] Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection
    Gao, Wei
    Liao, Guibiao
    Ma, Siwei
    Li, Ge
    Liang, Yongsheng
    Lin, Weisi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2091 - 2106
  • [27] Interactive context-aware network for RGB-T salient object detection
    Wang, Yuxuan
    Dong, Feng
    Zhu, Jinchao
    Chen, Jianren
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 72153 - 72174
  • [28] CAFCNet: Cross-modality asymmetric feature complement network for RGB-T salient object detection
    Jin, Dongze
    Shao, Feng
    Xie, Zhengxuan
    Mu, Baoyang
    Chen, Hangwei
    Jiang, Qiuping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [29] WaveNet: Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection
    Zhou, Wujie
    Sun, Fan
    Jiang, Qiuping
    Cong, Runmin
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3027 - 3039
  • [30] EDGE-Net: an edge-guided enhanced network for RGB-T salient object detection
    Zheng, Xin
    Wang, Boyang
    Ai, Liefu
    Tang, Pan
    Liu, Deyang
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (06)