CFRNet: Cross-Attention-Based Fusion and Refinement Network for Enhanced RGB-T Salient Object Detection

被引:0
|
作者
Deng, Biao [1 ,2 ]
Liu, Di [2 ]
Cao, Yang [2 ]
Liu, Hong [2 ]
Yan, Zhiguo [1 ]
Chen, Hu [2 ]
机构
[1] Dongfang Elect Autocontrol Engn Co LTD, Deyang 618000, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-T salient object detection; RGB-thermal fusion; cross-attention; fusion and refinement;
D O I
10.3390/s24227146
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Existing deep learning-based RGB-T salient object detection methods often struggle with effectively fusing RGB and thermal features. Therefore, obtaining high-quality features and fully integrating these two modalities are central research focuses. We developed an illumination prior-based coefficient predictor (MICP) to determine optimal interaction weights. We then designed a saliency-guided encoder (SG Encoder) to extract multi-scale thermal features incorporating saliency information. The SG Encoder guides the extraction of thermal features by leveraging their correlation with RGB features, particularly those with strong semantic relationships to salient object detection tasks. Finally, we employed a Cross-attention-based Fusion and Refinement Module (CrossFRM) to refine the fused features. The robust thermal features help refine the spatial focus of the fused features, aligning them more closely with salient objects. Experimental results demonstrate that our proposed approach can more accurately locate salient objects, significantly improving performance compared to 11 state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
    Zhou, Wujie
    Guo, Qinling
    Lei, Jingsheng
    Yu, Lu
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1224 - 1235
  • [12] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [13] Pyramid contract-based network for RGB-T salient object detection
    Ranwan Wu
    Hongbo Bi
    Cong Zhang
    Jiayuan Zhang
    Yuyu Tong
    Wei Jin
    Zhigang Liu
    Multimedia Tools and Applications, 2024, 83 : 20805 - 20825
  • [14] TSFNet: Two-Stage Fusion Network for RGB-T Salient Object Detection
    Guo, Qinling
    Zhou, Wujie
    Lei, Jingsheng
    Yu, Lu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1655 - 1659
  • [15] Efficient Context-Guided Stacked Refinement Network for RGB-T Salient Object Detection
    Huo, Fushuo
    Zhu, Xuegui
    Zhang, Lei
    Liu, Qifeng
    Shu, Yu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3111 - 3124
  • [16] CAE-Net: Cross-Modal Attention Enhancement Network for RGB-T Salient Object Detection
    Lv, Chengtao
    Wan, Bin
    Zhou, Xiaofei
    Sun, Yaoqi
    Hu, Ji
    Zhang, Jiyong
    Yan, Chenggang
    ELECTRONICS, 2023, 12 (04)
  • [17] Pyramid contract-based network for RGB-T salient object detection
    Wu, Ranwan
    Bi, Hongbo
    Zhang, Cong
    Zhang, Jiayuan
    Tong, Yuyu
    Jin, Wei
    Liu, Zhigang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 20805 - 20825
  • [18] Asymmetric cross-modal activation network for RGB-T salient object detection
    Xu, Chang
    Li, Qingwu
    Zhou, Qingkai
    Jiang, Xiongbiao
    Yu, Dabing
    Zhou, Yaqin
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [19] Transformer-Based Cross-Modal Integration Network for RGB-T Salient Object Detection
    Lv, Chengtao
    Zhou, Xiaofei
    Wan, Bin
    Wang, Shuai
    Sun, Yaoqi
    Zhang, Jiyong
    Yan, Chenggang
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (02) : 4741 - 4755
  • [20] PSNet: Parallel symmetric network for RGB-T salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhang, Jiayuan
    Zhang, Cong
    Xiang, Tian-Zhu
    Wang, Xiufang
    NEUROCOMPUTING, 2022, 511 (410-425) : 410 - 425