Parameter estimation for the complex fractional Ornstein-Uhlenbeck processes with Hurst parameter H ∈ (0,1/2)

被引:0
|
作者
Alazemi, Fares [1 ]
Alsenafi, Abdulaziz [1 ]
Chen, Yong [2 ]
Zhou, Hongjuan [3 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[2] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
关键词
Complex Wiener-It & ocirc; multiple integral; Fractional Brownian motion; Fractional Ornstein-Uhlenbeck process; Least squares estimate; Fourth moment theorem; alpha-fractional Brownian bridge; alpha-order fractional Brownian motion;
D O I
10.1016/j.chaos.2024.115556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein-Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter H is an element of (1/4,1/2) and the results of Hu et al. (2019) to a two-dimensional case. When H is an element of (0,1/4], it is found that the integrand of the estimator is not in the domain of the standard divergence operator. To facilitate the proofs, we develop a new inner product formula for functions of bounded variation in the reproducing kernel Hilbert space of fractional Brownian motion with Hurst parameter H is an element of (0,1/2). This formula is also applied to obtain the second moments of the so-called alpha-order fractional Brownian motion and the alpha-fractional bridges with the Hurst parameter H is an element of (0,1/2).
引用
收藏
页数:13
相关论文
共 50 条