Parameter estimation for the complex fractional Ornstein-Uhlenbeck processes with Hurst parameter H ∈ (0,1/2)

被引:0
|
作者
Alazemi, Fares [1 ]
Alsenafi, Abdulaziz [1 ]
Chen, Yong [2 ]
Zhou, Hongjuan [3 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[2] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
关键词
Complex Wiener-It & ocirc; multiple integral; Fractional Brownian motion; Fractional Ornstein-Uhlenbeck process; Least squares estimate; Fourth moment theorem; alpha-fractional Brownian bridge; alpha-order fractional Brownian motion;
D O I
10.1016/j.chaos.2024.115556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein-Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter H is an element of (1/4,1/2) and the results of Hu et al. (2019) to a two-dimensional case. When H is an element of (0,1/4], it is found that the integrand of the estimator is not in the domain of the standard divergence operator. To facilitate the proofs, we develop a new inner product formula for functions of bounded variation in the reproducing kernel Hilbert space of fractional Brownian motion with Hurst parameter H is an element of (0,1/2). This formula is also applied to obtain the second moments of the so-called alpha-order fractional Brownian motion and the alpha-fractional bridges with the Hurst parameter H is an element of (0,1/2).
引用
收藏
页数:13
相关论文
共 50 条
  • [22] PROPERTIES OF 2-PARAMETER ORNSTEIN-UHLENBECK PROCESSES
    WANG, ZK
    KEXUE TONGBAO, 1984, 29 (10): : 1415 - 1415
  • [23] Parameter Estimation for Ornstein-Uhlenbeck Process Driven by Sub-fractional Brownian Processes
    School of Mathematics and Statistics, An’yang Normal University, An’yang
    455000, China
    不详
    455000, China
    IAENG Int. J. Appl. Math., 2
  • [24] Parameter Estimation for Ornstein-Uhlenbeck Process with Small Fractional Levy Noises
    Xu, Fang
    Zhao, Yongfei
    Wei, Chao
    ENGINEERING LETTERS, 2022, 30 (04) : 1566 - 1572
  • [25] Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind
    Azmoodeh, Ehsan
    Morlanes, Jose Igor
    STATISTICS, 2015, 49 (01) : 1 - 18
  • [26] Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation
    Zhang, Pu
    Xiao, Wei-lin
    Zhang, Xi-li
    Niu, Pan-qiang
    ECONOMIC MODELLING, 2014, 36 : 198 - 203
  • [27] Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
    Janczura, Joanna
    Magdziarz, Marcin
    Metzler, Ralf
    CHAOS, 2023, 33 (10)
  • [28] Robust parameter estimation for the Ornstein-Uhlenbeck process
    Rieder, Sonja
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04): : 411 - 436
  • [29] On parameter estimation of the hidden Ornstein-Uhlenbeck process
    Kutoyants, Yury A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 248 - 263
  • [30] TWO-PARAMETER ORNSTEIN-UHLENBECK PROCESSES
    王梓坤
    Acta Mathematica Scientia, 1984, (01) : 1 - 12