Composite Separators with Very High Garnet Content for Solid-State Batteries

被引:0
|
作者
Vattappara, Kevin [1 ,3 ,4 ,5 ]
Finsterbusch, Martin [2 ]
Fattakhova-Rohlfing, Dina [2 ,3 ,4 ,5 ]
Kvasha, Andriy [1 ,3 ]
机构
[1] Basque Res & Technol Alliance BRTA, P Miramon 196, Donostia San Sebastian 20014, Spain
[2] Forschungszentrum Julich, Inst Energy Mat & Devices IMD Mat Synth & Proc 2, Wilhelm Johnen Str, D-52428 Julich, Germany
[3] ALISTORE European Res Inst, Hub Energie, FR CNRS 3104, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Univ Duisburg Essen, Fac Engn Sci, Inst Nanostruct & Technol, Lotharstr 1, D-47057 Duisburg, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
来源
CHEMELECTROCHEM | 2024年 / 11卷 / 21期
关键词
Solid composite electrolyte; ceramic-rich composite separator; lithium metal battery; solid state batteries; IONIC-CONDUCTIVITY; TETRAGONAL LI7LA3ZR2O12; POLYMER ELECTROLYTES; DENDRITE FORMATION; LITHIUM BATTERIES; MOLECULAR-WEIGHT; PERFORMANCE;
D O I
10.1002/celc.202400323
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-metal solid-state batteries are attractive as next generation of Li-ion batteries due to higher safety and potentially higher energy density. To improve processability, solid-composite separators combine advantages of inorganic and polymer separators in hybrid structure. We report a systematic approach to fabricate composite separators with high content (90-95 wt %) of ceramic Li-ion conducting Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) powder embedded in a polyethylene oxide (PEO)-LiTFSI (20 : 1) matrix and understand factors affecting their properties and performance. Separators with good mechanical flexibility and excellent thermal stability were obtained, by optimizing materials and processing parameters. It was found that PEO molecular weight strongly influences the microstructure and electrochemical properties of the separators. In optimized separator with 90 wt % of LLZO and PEO with Mw 300,000 g/mol, a total ionic conductivity of 1.4x10-5 S/cm at 60 degrees C was achieved. The ceramic-rich separator showed excellent long-term cycling stability for more than 460 cycles (1000 h) at 0.1 mA/cm2 in Li/Li symmetrical cells and achieved a critical current density of 0.25 mA/cm2. The separators also enabled initial discharge capacities of more than 160 mAh/g in full cells with Li metal anode and composite solid-state LiNi0.6Co0.2Mn0.2O2 cathode, although rapid capacity fade was observed after 10 cycles in fully solid-state configuration. Flexible composite electrolyte separators with a very high garnet content are produced by combining electrochemically stable ceramic powder with a PEO-LiTFSI matrix in a simple process that does not require sintering. The composite separators enable stable operation with lithium metal anodes. image
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries
    Li, Chenghan
    Zhou, Shi
    Dai, Lijie
    Zhou, Xuanyi
    Zhang, Biao
    Chen, Liwen
    Zeng, Tao
    Liu, Yating
    Tang, Yongfu
    Jiang, Jie
    Huang, Jianyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24661 - 24669
  • [42] Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte
    Wei, Jie
    Yang, Zuguang
    Lu, Guanjie
    Hu, Xiaolin
    Li, Zongyang
    Wang, Ronghua
    Xu, Chaohe
    ENERGY STORAGE MATERIALS, 2022, 53 : 204 - 211
  • [43] PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"
    Chen, Long
    Li, Yutao
    Li, Shuai-Peng
    Fan, Li-Zhen
    Nan, Ce-Wen
    Goodenough, John B.
    NANO ENERGY, 2018, 46 : 176 - 184
  • [44] Recent advances of composite electrolytes for solid-state Li batteries
    Xu, Laiqiang
    Li, Jiayang
    Shuai, Honglei
    Luo, Zheng
    Wang, Baowei
    Fang, Susu
    Zou, Guoqiang
    Hou, Hongshuai
    Peng, Hongjian
    Ji, Xiaobo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 524 - 548
  • [45] Composite Electrode Ink Formulation for All Solid-State Batteries
    Shen, Fengyu
    Dixit, Marm B.
    Zaman, Wahid
    Hortance, Nicholas
    Rogers, Bridget
    Hatzell, Kelsey B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : A3182 - A3188
  • [46] Recent advances of composite electrolytes for solid-state Li batteries
    Laiqiang Xu
    Jiayang Li
    Honglei Shuai
    Zheng Luo
    Baowei Wang
    Susu Fang
    Guoqiang Zou
    Hongshuai Hou
    Hongjian Peng
    Xiaobo Ji
    Journal of Energy Chemistry , 2022, (04) : 524 - 548
  • [47] A nanocrystal garnet skeleton-derived high-performance composite solid-state electrolyte membrane
    Chen, Lihan
    Huang, Xianzhun
    Ma, Ruotong
    Xiang, Wenyi
    Ma, Jian
    Wu, Yueyue
    Yang, Ding
    Wang, Chengwei
    Ping, Weiwei
    Xiang, Hongfa
    ENERGY STORAGE MATERIALS, 2024, 65
  • [48] A flexible composite electrolyte membrane with ultrahigh LLZTO garnet content for quasi solid state Li-air batteries
    Pan, Xiaowei
    Sun, Jiawen
    Jin, Chao
    Wang, Zhangjun
    Xiao, Ruijuan
    Peng, Lin
    Shen, Liwei
    Li, Cong
    Yang, Ruizhi
    SOLID STATE IONICS, 2020, 351
  • [49] Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries
    Wang, Xu
    Huang, Sipeng
    Peng, Yiting
    Min, Yulin
    Xu, Qunjie
    CHEMSUSCHEM, 2024, 17 (14)
  • [50] Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries
    Nguyen, An-Giang
    Park, Chan-Jin
    JOURNAL OF MEMBRANE SCIENCE, 2023, 675