YOLOv7-PE: A Precise and Efficient Enhancement of YOLOv7 for Underwater Target Detection

被引:1
|
作者
Li, Zhichuang [1 ]
Xie, Haijun [1 ,2 ]
Feng, Jingyi [1 ]
Wang, Zhenbo [1 ]
Yuan, Zizhao [1 ]
机构
[1] Beijing Inst Technol, Zhuhai 519088, Peoples R China
[2] Guangdong Prov Lab Lingnan Modern Agr Sci & Techno, Heyuan Branch, Heyuan 517000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Computational modeling; Accuracy; Head; Adaptation models; Neck; Computational efficiency; Object detection; Underwater target detection; YOLOv7-PE; efficient decoupled head; anchor-free; CSPSPPF; CBAM;
D O I
10.1109/ACCESS.2024.3417322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In underwater target detection tasks, challenges such as image blurring, complex backgrounds, and aggregation of small targets lead to problems such as difficulty in model feature extraction, target leakage, and false detection. In order to improve the accuracy, real-time performance and lightweight of underwater target detection models, we propose YOLOv7-PE: an accurate and efficient YOLOv7 improved model for underwater target detection.YOLOv7-PE is based on the single-stage target detection model YOLOv7 and separates the classification and regression tasks to be processed separately by decoupling the header design to enhance the feature extraction. We also introduce an anchor-free based design, which simplifies the target detection process, reduces the prediction time, and can adapt to targets in underwater environments. And to improve the computational efficiency, we introduce the CSPSPPF module, which reduces the computational cost of the model and improves the inference speed. In addition, we introduce the CBAM attention mechanism to enhance the feature representation in both channel and spatial dimensions. Through extensive qualitative and quantitative analyses, we verified that YOLOv7-PE has higher detection accuracy and efficient performance on the task of target detection in complex underwater environments. Relative to YOLOv7, the the average detection accuracy(mAP) of YOLOv7-PE is improved by 1.23%. Meanwhile, the Frames Per Second(FPS) of the model is improved by 1.52%, while the amount of model parameters is reduced by 6.78%. Our YOLOv7-PE model performs more accurately as well as efficiently compared to other classical target detection models.
引用
收藏
页码:133937 / 133951
页数:15
相关论文
共 50 条
  • [31] Improved remote sensing image target detection based on YOLOv7
    XU Shuanglong
    CHEN Zhihong
    ZHANG Haiwei
    XUE Lifang
    SU Huijun
    Optoelectronics Letters, 2024, 20 (04) : 234 - 242
  • [32] Optimizing YOLOv7 for Semiconductor Defect Detection
    Dehaerne, Enrique
    Dey, Bappaditya
    Halder, Sandip
    De Gendt, Stefan
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [33] Improved remote sensing image target detection based on YOLOv7
    Shuanglong Xu
    Zhihong Chen
    Haiwei Zhang
    Lifang Xue
    Huijun Su
    Optoelectronics Letters, 2024, 20 : 234 - 242
  • [34] Improved YOLOv7 based apple target detection in complex environment
    Mo, Henghui
    Wei, Linjing
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (12): : 2447 - 2458
  • [35] PBA-YOLOv7: An Object Detection Method Based on an Improved YOLOv7 Network
    Sun, Yang
    Li, Yi
    Li, Song
    Duan, Zehao
    Ning, Haonan
    Zhang, Yuhang
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [36] Improved Cherry Detection Method at Night Based on YOLOv7: YOLOv7-Cherry
    Gai, Rongli
    Kong, Xiangzhou
    Qin, Shan
    Wei, Kai
    Computer Engineering and Applications, 2024, 60 (21) : 315 - 323
  • [37] Small target flame detection algorithm based on improved YOLOv7
    Niu, Shaoshan
    Zhu, Yun
    Wang, Jianyu
    Xu, Zhengxing
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [38] Improved remote sensing image target detection based on YOLOv7
    Xu, Shuanglong
    Chen, Zhihong
    Zhang, Haiwei
    Xue, Lifang
    Su, Huijun
    OPTOELECTRONICS LETTERS, 2024, 20 (04) : 234 - 242
  • [39] Small-Sample Underwater Target Detection: A Joint Approach Utilizing Diffusion and YOLOv7 Model
    Cheng, Chensheng
    Hou, Xujia
    Wen, Xin
    Liu, Weidong
    Zhang, Feihu
    REMOTE SENSING, 2023, 15 (19)
  • [40] MoL-YOLOv7: Streamlining Industrial Defect Detection With an Optimized YOLOv7 Approach
    Raj, G. Deepti
    Prabadevi, B.
    IEEE ACCESS, 2024, 12 : 117090 - 117101