Improved YOLOv7 based apple target detection in complex environment

被引:0
|
作者
Mo, Henghui [1 ]
Wei, Linjing [1 ]
机构
[1] College of Information Science and Technology, Gansu Agricultural University, Lanzhou,730070, China
关键词
Equalizers - Feature Selection - Harvesters;
D O I
10.3785/j.issn.1008-973X.2024.12.004
中图分类号
学科分类号
摘要
Robotic harvesters face challenges in identifying apples under complex natural conditions such as unstable lighting, high fruit diversity, and severe leaf occlusion, which impedes the capture of key features, reducing harvesting efficiency and accuracy. An enhanced apple detection algorithm based on the YOLOv7 model for complex scenarios was proposed. A limited contrast adaptive histogram equalization technique was employed to enhance the contrast of apple images, reducing the background interference and clarifying the target contours. A multi-scale hybrid adaptive attention mechanism was introduced. The features were decomposed and reconstructed, and the spatial and channel attention directives were synergistically integrated to optimize multi-layer feature modeling over various distances, thereby boosting the model’s capability to extract apple features and resist background noise. Full-dimensional dynamic convolution was implemented to refine the feature selection process through a meticulous attention mechanism. The number of detection heads was increased to address the challenges of detecting small targets. The Meta-ACON activation function was used to optimize the attention allocation during feature extraction process. Experimental results demonstrated that the improved YOLOv7 model, achieved average accuracy and recall rates of 85.7% and 87.0%, respectively. Compared to Faster R-CNN, SSD, YOLOv5, and the original YOLOv7, the average detection precision was improved by 15.2, 7.5, 4.5, and 2.5 percentage points, and the average recall was improved by 13.7, 6.5, 3.6, and 1.3 percentage points, respectively. The model exhibits exceptional performance, providing robust technical support for apple growth monitoring and mechanical harvesting research. © 2024 Zhejiang University. All rights reserved.
引用
收藏
页码:2447 / 2458
相关论文
共 50 条
  • [1] DETECTION OF APPLE LEAF DISEASES TARGET BASED ON IMPROVED YOLOv7
    Feng, Lingqing
    Liu, Yujing
    Yang, Hua
    Jia, Zongwei
    Guan, Jiaxiong
    Zhu, Huiru
    Hou, Yiming
    INMATEH-AGRICULTURAL ENGINEERING, 2024, 72 (01): : 280 - 290
  • [2] Underwater Target Detection Based on Improved YOLOv7
    Liu, Kaiyue
    Sun, Qi
    Sun, Daming
    Peng, Lin
    Yang, Mengduo
    Wang, Nizhuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [3] Grape Target Detection Method in Orchard Environment Based on Improved YOLOv7
    Sun, Fuchun
    Lv, Qiurong
    Bian, Yuechao
    He, Renwei
    Lv, Dong
    Gao, Leina
    Wu, Haorong
    Li, Xiaoxiao
    AGRONOMY-BASEL, 2025, 15 (01):
  • [4] Underwater Target Detection Based on Improved YOLOv7
    Fu, Junshang
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (04) : 422 - 429
  • [5] A Pineapple Target Detection Method in a Field Environment Based on Improved YOLOv7
    Lai, Yuhao
    Ma, Ruijun
    Chen, Yu
    Wan, Tao
    Jiao, Rui
    He, Huandong
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [6] Night target detection algorithm based on improved YOLOv7
    Bowen, Zheng
    Huacai, Lu
    Shengbo, Zhu
    Xinqiang, Chen
    Hongwei, Xing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Improved Apple Fruit Target Recognition Method Based on YOLOv7 Model
    Yang, Huawei
    Liu, Yinzeng
    Wang, Shaowei
    Qu, Huixing
    Li, Ning
    Wu, Jie
    Yan, Yinfa
    Zhang, Hongjian
    Wang, Jinxing
    Qiu, Jianfeng
    AGRICULTURE-BASEL, 2023, 13 (07):
  • [8] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [9] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650
  • [10] Coastal Vessel Target Detection Model Based on Improved YOLOv7
    Zhao, Guiling
    Xu, Ziyao
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2025,