Improved YOLOv7 based apple target detection in complex environment

被引:0
|
作者
Mo, Henghui [1 ]
Wei, Linjing [1 ]
机构
[1] College of Information Science and Technology, Gansu Agricultural University, Lanzhou,730070, China
关键词
Equalizers - Feature Selection - Harvesters;
D O I
10.3785/j.issn.1008-973X.2024.12.004
中图分类号
学科分类号
摘要
Robotic harvesters face challenges in identifying apples under complex natural conditions such as unstable lighting, high fruit diversity, and severe leaf occlusion, which impedes the capture of key features, reducing harvesting efficiency and accuracy. An enhanced apple detection algorithm based on the YOLOv7 model for complex scenarios was proposed. A limited contrast adaptive histogram equalization technique was employed to enhance the contrast of apple images, reducing the background interference and clarifying the target contours. A multi-scale hybrid adaptive attention mechanism was introduced. The features were decomposed and reconstructed, and the spatial and channel attention directives were synergistically integrated to optimize multi-layer feature modeling over various distances, thereby boosting the model’s capability to extract apple features and resist background noise. Full-dimensional dynamic convolution was implemented to refine the feature selection process through a meticulous attention mechanism. The number of detection heads was increased to address the challenges of detecting small targets. The Meta-ACON activation function was used to optimize the attention allocation during feature extraction process. Experimental results demonstrated that the improved YOLOv7 model, achieved average accuracy and recall rates of 85.7% and 87.0%, respectively. Compared to Faster R-CNN, SSD, YOLOv5, and the original YOLOv7, the average detection precision was improved by 15.2, 7.5, 4.5, and 2.5 percentage points, and the average recall was improved by 13.7, 6.5, 3.6, and 1.3 percentage points, respectively. The model exhibits exceptional performance, providing robust technical support for apple growth monitoring and mechanical harvesting research. © 2024 Zhejiang University. All rights reserved.
引用
收藏
页码:2447 / 2458
相关论文
共 50 条
  • [41] Lightweight Underwater Target Detection Algorithm Based on YOLOv7
    Xin, Shiao
    Ge, Haibo
    Yuan, Hao
    Yang, Yudi
    Yao, Yang
    Ma, Sai
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 387 - 391
  • [42] Apple target recognition method in complex environment based on improved YOLOv4
    Ji, Wei
    Gao, Xiaoxiao
    Xu, Bo
    Pan, Yu
    Zhang, Zhuo
    Zhao, Dean
    JOURNAL OF FOOD PROCESS ENGINEERING, 2021, 44 (11)
  • [43] Research on parking space detection algorithm in complex environments based on improved YOLOv7
    Wang, Wanqi
    Zhang, Wei
    Zhang, Hong
    Zhang, Anyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [44] Mask wearing detection algorithm based on improved YOLOv7
    Luo, Fang
    Zhang, Yin
    Xu, Lunhui
    Zhang, Zhiliang
    Li, Ming
    Zhang, Weixiong
    MEASUREMENT & CONTROL, 2024, 57 (06): : 751 - 762
  • [45] Rail Surface Defect Detection Based on Improved YOLOv7
    Chen, Renxiang
    Pan, Sheng
    Yang, Lixia
    Gao, Xiaopeng
    Wang, Jianxi
    Journal of Railway Engineering Society, 41 (07): : 18 - 24
  • [46] Improved Complex Road Scene Object Detection Algorithm of YOLOv7
    Du, Juan
    Cui, Shaohua
    Jin, Meijuan
    Ru, Chen
    Computer Engineering and Applications, 2024, 60 (01) : 96 - 103
  • [47] Improved YOLOv7 algorithm for flame detection in complex urban environments
    Zhou, Qinghui
    Zheng, Wuchao
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [48] FOREST FIRE DETECTION BASED ON IMPROVED YOLOV7 MODELING
    Yang, Q.
    Zhang, T.
    Tong, X.
    Hu, L. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (04): : 3123 - 3136
  • [49] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448
  • [50] Steel Surface Defect Detection Based on Improved YOLOv7
    Li, Ming
    Wei, Lisheng
    Zheng, Bowen
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 51 - 55