Task Offloading and Trajectory Optimization in UAV Networks: A Deep Reinforcement Learning Method Based on SAC and A-Star

被引:0
|
作者
Liu, Jianhua [1 ]
Xie, Peng [1 ]
Liu, Jiajia [1 ]
Tu, Xiaoguang [1 ]
机构
[1] Civil Aviat Flight Univ China, Inst Elect & Elect Engn, Deyang 618307, Peoples R China
来源
基金
中国博士后科学基金;
关键词
Mobile edge computing; SAC; communication security; A; -Star; UAV; RESOURCE;
D O I
10.32604/cmes.2024.054002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In mobile edge computing, unmanned aerial vehicles (UAVs) equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility, flexibility, rapid deployment, and terrain agnosticism. These attributes enable UAVs to reach designated areas, thereby addressing temporary computing swiftly in scenarios where ground-based servers are overloaded or unavailable. However, the inherent broadcast nature of line-of-sight transmission methods employed by UAVs renders them vulnerable to eavesdropping attacks. Meanwhile, there are often obstacles that affect flight safety in real UAV operation areas, and collisions between UAVs may also occur. To solve these problems, we propose an innovative A & lowast;SAC & lowast; SAC deep reinforcement learning algorithm, which seamlessly integrates the benefits of Soft Actor-Critic (SAC) and A & lowast; & lowast; (A-Star) algorithms. This algorithm jointly optimizes the hovering position and task offloading proportion of the UAV through a task offloading function. Furthermore, our algorithm incorporates a path-planning function that identifies the most energy-efficient route for the UAV to reach its optimal hovering point. This approach not only reduces the flight energy consumption of the UAV but also lowers overall energy consumption, thereby optimizing system-level energy efficiency. Extensive simulation results demonstrate that, compared to other algorithms, our approach achieves superior system benefits. Specifically, it exhibits an average improvement of 13.18% in terms of different computing task sizes, 25.61% higher on average in terms of the power of electromagnetic wave interference intrusion into UAVs emitted by different auxiliary UAVs, and 35.78% higher on average in terms of the maximum computing frequency of different auxiliary UAVs. As for path planning, the simulation results indicate that our algorithm is capable of determining the optimal collision-avoidance path for each auxiliary UAV, enabling them to safely reach their designated endpoints in diverse obstacle-ridden environments.
引用
收藏
页码:1243 / 1273
页数:31
相关论文
共 50 条
  • [41] Multi-Agent Deep Reinforcement Learning Based UAV Trajectory Optimization for Differentiated Services
    Ning, Zhaolong
    Yang, Yuxuan
    Wang, Xiaojie
    Song, Qingyang
    Guo, Lei
    Jamalipour, Abbas
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5818 - 5834
  • [42] Deep reinforcement learning based trajectory optimization for magnetometer-mounted UAV to landmine detection
    Barnawi, Ahmed
    Kumar, Neeraj
    Budhiraja, Ishan
    Kumar, Krishan
    Almansour, Amal
    Alzahrani, Bander
    COMPUTER COMMUNICATIONS, 2022, 195 : 441 - 450
  • [43] Federated Deep Reinforcement Learning for Task Offloading in Digital Twin Edge Networks
    Dai, Yueyue
    Zhao, Jintang
    Zhang, Jing
    Zhang, Yan
    Jiang, Tao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 2849 - 2863
  • [44] Task Assignment of UAV Swarms Based on Deep Reinforcement Learning
    Liu, Bo
    Wang, Shulei
    Li, Qinghua
    Zhao, Xinyang
    Pan, Yunqing
    Wang, Changhong
    DRONES, 2023, 7 (05)
  • [45] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [46] Task offloading scheme combining deep reinforcement learning and convolutional neural networks for vehicle trajectory prediction in smart cities
    Zeng, Jiachen
    Gou, Fangfang
    Wu, Jia
    COMPUTER COMMUNICATIONS, 2023, 208 : 29 - 43
  • [47] A Joint Trajectory and Computation Offloading Scheme for UAV-MEC Networks via Multi-Agent Deep Reinforcement Learning
    Du, Xinyang
    Li, Xuanheng
    Zhao, Nan
    Wang, Xianbin
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5438 - 5443
  • [48] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [49] Deep Reinforcement Learning for Scheduling and Offloading in UAV-Assisted Mobile Edge Networks
    Tian X.
    Miao P.
    Zhang L.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [50] Deep Reinforcement Learning for Task Offloading and Power Allocation in UAV-Assisted MEC System
    Zhao, Nan
    Ren, Fan
    Du, Wei
    Ye, Zhiyang
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2021, 12 (04) : 32 - 51