Federated Deep Reinforcement Learning for Task Offloading in Digital Twin Edge Networks

被引:12
|
作者
Dai, Yueyue [1 ]
Zhao, Jintang [1 ]
Zhang, Jing [2 ]
Zhang, Yan [3 ]
Jiang, Tao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr Mobile Commun 6G, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Inst Space Integrated Ground Network, Hefei 230088, Peoples R China
[3] Univ Oslo, Dept Informat, N-0317 Oslo, Norway
基金
中国国家自然科学基金;
关键词
Digital twins; Computational modeling; Task analysis; Training; Resource management; Base stations; Servers; Digital twin edge networks; federated deep reinforcement learning; task offloading; RESOURCE-ALLOCATION; ASSOCIATION;
D O I
10.1109/TNSE.2024.3350710
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Digital twin edge networks provide a new paradigm that combines mobile edge computing (MEC) and digital twins to improve network performance and reduce communication cost by utilizing digital twin models of physical objects. The construction of digital twin models requires powerful computing ability. However, the distributed devices with limited computing resources cannot complete high-fidelity digital twin construction. Moreover, weak communication links between these devices may hinder the potential of digital twins. To address these issues, we propose a two-layer digital twin edge network, in which the physical network layer offloads training tasks using passive reflecting links, and the digital twin layer establishes a digital twin model to record the dynamic states of physical components. We then formulate a system cost minimization problem to jointly optimize task offloading, configurations of passive reflecting links, and computing resources. Finally, we design a federated deep reinforcement learning (DRL) scheme to solve the problem, where local agents train offloading decisions and global agents optimize the allocation of edge computing resources and configurations of passive reflecting elements. Numerical results show the effectiveness of the proposed federated DRL and it can reduce the system cost by up to 67.1% compared to the benchmarks.
引用
收藏
页码:2849 / 2863
页数:15
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Stochastic Computation Offloading in Digital Twin Networks
    Dai, Yueyue
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4968 - 4977
  • [2] Dynamic task offloading for digital twin-empowered mobile edge computing via deep reinforcement learning
    Chen, Ying
    Gu, Wei
    Xu, Jiajie
    Zhang, Yongchao
    Min, Geyong
    CHINA COMMUNICATIONS, 2023, 20 (11) : 164 - 175
  • [3] Dynamic Task Offloading for Digital Twin-Empowered Mobile Edge Computing via Deep Reinforcement Learning
    Ying Chen
    Wei Gu
    Jiajie Xu
    Yongchao Zhang
    Geyong Min
    ChinaCommunications, 2023, 20 (11) : 164 - 175
  • [4] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [5] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [6] Collaborative Task Offloading Based on Deep Reinforcement Learning in Heterogeneous Edge Networks
    Du, Yupeng
    Huang, Zhenglei
    Yang, Shujie
    Xiao, Han
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 375 - 380
  • [7] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [8] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [9] Federated Deep Reinforcement Learning-based task offloading system in edge computing environment
    Merakchi, Hiba
    Bagaa, Miloud
    Messaoud, Ahmed Ouameur
    Ksentini, Adlen
    Sehad, Abdenour
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5580 - 5586
  • [10] Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
    Moon, Sungwon
    Lim, Yujin
    SENSORS, 2022, 22 (24)