Federated Deep Reinforcement Learning for Task Offloading in Digital Twin Edge Networks

被引:12
|
作者
Dai, Yueyue [1 ]
Zhao, Jintang [1 ]
Zhang, Jing [2 ]
Zhang, Yan [3 ]
Jiang, Tao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr Mobile Commun 6G, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Inst Space Integrated Ground Network, Hefei 230088, Peoples R China
[3] Univ Oslo, Dept Informat, N-0317 Oslo, Norway
基金
中国国家自然科学基金;
关键词
Digital twins; Computational modeling; Task analysis; Training; Resource management; Base stations; Servers; Digital twin edge networks; federated deep reinforcement learning; task offloading; RESOURCE-ALLOCATION; ASSOCIATION;
D O I
10.1109/TNSE.2024.3350710
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Digital twin edge networks provide a new paradigm that combines mobile edge computing (MEC) and digital twins to improve network performance and reduce communication cost by utilizing digital twin models of physical objects. The construction of digital twin models requires powerful computing ability. However, the distributed devices with limited computing resources cannot complete high-fidelity digital twin construction. Moreover, weak communication links between these devices may hinder the potential of digital twins. To address these issues, we propose a two-layer digital twin edge network, in which the physical network layer offloads training tasks using passive reflecting links, and the digital twin layer establishes a digital twin model to record the dynamic states of physical components. We then formulate a system cost minimization problem to jointly optimize task offloading, configurations of passive reflecting links, and computing resources. Finally, we design a federated deep reinforcement learning (DRL) scheme to solve the problem, where local agents train offloading decisions and global agents optimize the allocation of edge computing resources and configurations of passive reflecting elements. Numerical results show the effectiveness of the proposed federated DRL and it can reduce the system cost by up to 67.1% compared to the benchmarks.
引用
收藏
页码:2849 / 2863
页数:15
相关论文
共 50 条
  • [41] Task offloading of edge computing network based on Lyapunov and deep reinforcement learning
    Qiao, Xudong
    Zhou, Yongxin
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1054 - 1059
  • [42] Dependent Task Offloading in Edge Computing Using GNN and Deep Reinforcement Learning
    Cao, Zequn
    Deng, Xiaoheng
    Yue, Sheng
    Jiang, Ping
    Ren, Ju
    Gui, Jinsong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21632 - 21646
  • [43] Prioritized Task Offloading in Vehicular Edge Computing Using Deep Reinforcement Learning
    Uddin, Ashab
    Sakr, Ahmed Hamdi
    Zhang, Ning
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [44] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [45] Mobility-Aware Dependent Task Offloading in Edge Computing: A Digital Twin-Assisted Reinforcement Learning Approach
    Chen, Xiangchun
    Cao, Jiannong
    Sahni, Yuvraj
    Zhang, Mingjin
    Liang, Zhixuan
    Yang, Lei
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 2979 - 2994
  • [46] Federated Reinforcement Learning-Empowered Task Offloading for Large Models in Vehicular Edge Computing
    Wu, Huaming
    Gu, Anqi
    Liang, Yonghui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1979 - 1991
  • [47] Optimizing Federated Learning With Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT
    Yang, Wei
    Xiang, Wei
    Yang, Yuan
    Cheng, Peng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1884 - 1893
  • [48] Cooperative Federated Learning-Based Task Offloading Scheme for Tactical Edge Networks
    Kim, Sungwook
    IEEE ACCESS, 2021, 9 (09): : 145739 - 145747
  • [49] Asynchronous Federated Deep-Reinforcement-Learning-Based Dependency Task Offloading for UAV-Assisted Vehicular Networks
    Shen, Si
    Shen, Guojiang
    Dai, Zhehao
    Zhang, Kaiyu
    Kong, Xiangjie
    Li, Jianxin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 31561 - 31574
  • [50] Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment
    Xiang, Hui
    Zhang, Meiyu
    Jian, Chengfeng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3323 - 3339