A Detection Algorithm for Surface Defects of Printed Circuit Board Based on Improved YOLOv8

被引:2
|
作者
Yao, Lei [1 ]
Zhao, Bing [1 ]
Wang, Xihui [2 ]
Mei, Sihan [1 ]
Chi, Yulun [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Elect Engn, Shanghai 200082, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200082, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
YOLO; Accuracy; Attention mechanisms; Computational modeling; Printed circuits; Feature extraction; Robustness; Neck; Steel; Defect detection; PCB defects detection; YOLOv8; attention mechanism; SPPELAN; loss function;
D O I
10.1109/ACCESS.2024.3498004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Improving detection accuracy is a challenging task when detecting defects in PCBs. To conquer the issue of degradation of recognition performance of existing intelligent detection algorithms in different environments, we present an improved algorithm, IEMA-YOLOv8, based on YOLOv8. First, we design a novel Efficient Multi-Scale Attention (EMA) combined with the Inverted Residual Mobile Block (IRMB) to form a new attention mechanism called IEMA. The IEMA module is subsequently incorporated into the C2f module to boost the model's overall performance. Secondly, the Spatial Pyramid Pooling Enhanced with ELAN (SPPELAN) module is employed to improve the original Spatial Pyramid Pooling Fast (SPPF) module, thereby bolstering the model's capacity to recognize defective regions. Finally, the More Focused Intersection over Union (Focaler-IoU) loss function replaces the original Complete Intersection over Union (CIoU) loss function, aiming to compensate for the limitations of the current bounding box regression methodology, thus further enhancing the efficacy of detection in the task. The experimental results show that our proposed IEMA-YOLOv8 algorithm has precision, recall, mAP50, and mAP50:95 values of 88.8%, 96.8%, 94.6%, and 51%, respectively, provided that the model complexity is kept basically the same and the Frames Per Second (FPS) value reaches 116.2. These values are 1.1%, 3.6%, 4.9%, and 6% higher than the original YOLOv8n algorithm. Compared with the YOLO family of one-stage detection models, our proposed algorithm has significant advantages in defect detection.
引用
收藏
页码:170227 / 170242
页数:16
相关论文
共 50 条
  • [31] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    PROCESSES, 2024, 12 (05)
  • [32] Improved container damage detection algorithm of YOLOv8
    Yu, Ding
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 90 - 95
  • [33] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [34] A lightweight rice pest detection algorithm based on improved YOLOv8
    Zheng, Yong
    Zheng, Weiheng
    Du, Xia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8
    Zhang, Tianxin
    Wang, Fuwei
    Wang, Weimin
    Zhao, Qihao
    Ning, Weijun
    Wu, Haodong
    IEEE ACCESS, 2024, 12 : 117354 - 117362
  • [36] A Glove-Wearing Detection Algorithm Based on Improved YOLOv8
    Li, Shichu
    Huang, Huiping
    Meng, Xiangyin
    Wang, Mushuai
    Li, Yang
    Xie, Lei
    Distante, Cosimo
    SENSORS, 2023, 23 (24)
  • [37] Vehicle Detection Algorithm Based on Improved YOLOv8 in Traffic Surveillance
    Zhou, Fei
    Guo, Dudu
    Wang, Yang
    Wang, Qingqing
    Qin, Yin
    Yang, Zhuomin
    He, Haijun
    Computer Engineering and Applications, 2024, 60 (06)
  • [38] Improved Road Damage Detection Algorithm of YOLOv8
    Li, Song
    Shi, Tao
    Jing, Fangke
    Computer Engineering and Applications, 2023, 59 (23) : 165 - 174
  • [39] An Oracle Bone Inscriptions Detection Algorithm Based on Improved YOLOv8
    Zhen, Qianqian
    Wu, Liang
    Liu, Guoying
    ALGORITHMS, 2024, 17 (05)
  • [40] YOLOGX: an improved forest fire detection algorithm based on YOLOv8
    Li, Caixiong
    Du, Yue
    Zhang, Xing
    Wu, Peng
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2025, 12