Physics-informed neural networks in support of modal wavenumber estimation

被引:0
|
作者
Yoon, Seunghyun [1 ]
Park, Yongsung [2 ]
Lee, Keunhwa [3 ]
Seong, Woojae [4 ,5 ]
机构
[1] Seoul Natl Univ, Inst Engn Res, Seoul 08826, South Korea
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Sejong Univ, Dept Ocean Syst Engn, Seoul 05006, South Korea
[4] Seoul Natl Univ, Dept Naval Architecture & Ocean Engn, Seoul 08826, South Korea
[5] Seoul Natl Univ, Res Inst Marine Syst Engn, Seoul 08826, South Korea
来源
关键词
HIGH-RESOLUTION ALGORITHM; SHALLOW-WATER; GEOACOUSTIC INVERSION; BAYESIAN OPTIMIZATION; DEPTH ESTIMATION; SOUND SPEED; FIELD; EXTRACTION; RANGE; LOCALIZATION;
D O I
10.1121/10.0030461
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A physics-informed neural network (PINN) enables the estimation of horizontal modal wavenumbers using ocean pressure data measured at multiple ranges. Mode representations for the ocean acoustic pressure field are derived from the Hankel transform relationship between the depth-dependent Green's function in the horizontal wavenumber domain and the field in the range domain. We obtain wavenumbers by transforming the range samples to the wavenumber domain, and maintaining range coherence of the data is crucial for accurate wavenumber estimation. In the ocean environment, the sensitivity of phase variations in range often leads to degradation in range coherence. To address this, we propose using OceanPINN [Yoon, Park, Gerstoft, and Seong, J. Acoust. Soc. Am. 155(3), 2037-2049 (2024)] to manage spatially non-coherent data. OceanPINN is trained using the magnitude of the data and predicts phase-refined data. Modal wavenumber estimation methods are then applied to this refined data, where the enhanced range coherence results in improved accuracy. Additionally, sparse Bayesian learning, with its high-resolution capability, further improves the modal wavenumber estimation. The effectiveness of the proposed approach is validated through its application to both simulated and SWellEx-96 experimental data.
引用
收藏
页码:2275 / 2286
页数:12
相关论文
共 50 条
  • [31] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [32] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [33] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [34] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [35] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [36] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [37] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [38] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [39] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [40] Loss-attentional physics-informed neural networks
    Song, Yanjie
    Wang, He
    Yang, He
    Taccari, Maria Luisa
    Chen, Xiaohui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501