FedCiR: Client-Invariant Representation Learning for Federated Non-IID Features

被引:1
|
作者
Li, Zijian [1 ]
Lin, Zehong [1 ]
Shao, Jiawei [1 ]
Mao, Yuyi [2 ]
Zhang, Jun [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
关键词
Training; Representation learning; Feature extraction; Distributed databases; Data models; Mutual information; Servers; federated learning (FL); non-independent and identically distributed (non-IID) data; edge intelligence;
D O I
10.1109/TMC.2024.3376697
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a distributed learning paradigm that maximizes the potential of data-driven models for edge devices without sharing their raw data. However, devices often have non-independent and identically distributed (non-IID) data, meaning their local data distributions can vary significantly. The heterogeneity in input data distributions across devices, commonly referred to as the feature shift problem, can adversely impact the training convergence and accuracy of the global model. To analyze the intrinsic causes of the feature shift problem, we develop a generalization error bound in FL, which motivates us to propose FedCiR, a client-invariant representation learning framework that enables clients to extract informative and client-invariant features. Specifically, we improve the mutual information term between representations and labels to encourage representations to carry essential classification knowledge, and diminish the mutual information term between the client set and representations conditioned on labels to promote representations of clients to be client-invariant. We further incorporate two regularizers into the FL framework to bound the mutual information terms with an approximate global representation distribution to compensate for the absence of the ground-truth global representation distribution, thus achieving informative and client-invariant feature extraction. To achieve global representation distribution approximation, we propose a data-free mechanism performed by the server without compromising privacy. Extensive experiments demonstrate the effectiveness of our approach in achieving client-invariant representation learning and solving the data heterogeneity issue.
引用
收藏
页码:10509 / 10522
页数:14
相关论文
共 50 条
  • [41] Experimenting With Normalization Layers in Federated Learning on Non-IID Scenarios
    Casella, Bruno
    Esposito, Roberto
    Sciarappa, Antonio
    Cavazzoni, Carlo
    Aldinucci, Marco
    IEEE ACCESS, 2024, 12 : 47961 - 47971
  • [42] FedProc: Prototypical contrastive federated learning on non-IID data
    Mu, Xutong
    Shen, Yulong
    Cheng, Ke
    Geng, Xueli
    Fu, Jiaxuan
    Zhang, Tao
    Zhang, Zhiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 93 - 104
  • [43] Data independent warmup scheme for non-IID federated learning
    Arafeh, Mohamad
    Ould-Slimane, Hakima
    Otrok, Hadi
    Mourad, Azzam
    Talhi, Chamseddine
    Damiani, Ernesto
    INFORMATION SCIENCES, 2023, 623 : 342 - 360
  • [44] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [45] FedCML: Federated Clustering Mutual Learning with non-IID Data
    Chen, Zekai
    Wang, Fuyi
    Yu, Shengxing
    Liu, Ximeng
    Zheng, Zhiwei
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 623 - 636
  • [46] Data augmentation scheme for federated learning with non-IID data
    Tang L.
    Wang D.
    Liu S.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (01): : 164 - 176
  • [47] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [48] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [49] A Study of Enhancing Federated Learning on Non-IID Data with Server Learning
    Mai V.S.
    La R.J.
    Zhang T.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 15
  • [50] FedBnR: Mitigating federated learning Non-IID problem by breaking the skewed task and reconstructing representation
    Wang, Chao
    Xia, Hui
    Xu, Shuo
    Chi, Hao
    Zhang, Rui
    Hu, Chunqiang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 153 : 1 - 11