FedCiR: Client-Invariant Representation Learning for Federated Non-IID Features

被引:1
|
作者
Li, Zijian [1 ]
Lin, Zehong [1 ]
Shao, Jiawei [1 ]
Mao, Yuyi [2 ]
Zhang, Jun [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
关键词
Training; Representation learning; Feature extraction; Distributed databases; Data models; Mutual information; Servers; federated learning (FL); non-independent and identically distributed (non-IID) data; edge intelligence;
D O I
10.1109/TMC.2024.3376697
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a distributed learning paradigm that maximizes the potential of data-driven models for edge devices without sharing their raw data. However, devices often have non-independent and identically distributed (non-IID) data, meaning their local data distributions can vary significantly. The heterogeneity in input data distributions across devices, commonly referred to as the feature shift problem, can adversely impact the training convergence and accuracy of the global model. To analyze the intrinsic causes of the feature shift problem, we develop a generalization error bound in FL, which motivates us to propose FedCiR, a client-invariant representation learning framework that enables clients to extract informative and client-invariant features. Specifically, we improve the mutual information term between representations and labels to encourage representations to carry essential classification knowledge, and diminish the mutual information term between the client set and representations conditioned on labels to promote representations of clients to be client-invariant. We further incorporate two regularizers into the FL framework to bound the mutual information terms with an approximate global representation distribution to compensate for the absence of the ground-truth global representation distribution, thus achieving informative and client-invariant feature extraction. To achieve global representation distribution approximation, we propose a data-free mechanism performed by the server without compromising privacy. Extensive experiments demonstrate the effectiveness of our approach in achieving client-invariant representation learning and solving the data heterogeneity issue.
引用
收藏
页码:10509 / 10522
页数:14
相关论文
共 50 条
  • [21] Federated Dictionary Learning from Non-IID Data
    Gkillas, Alexandros
    Ampeliotis, Dimitris
    Berberidis, Kostas
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [22] Dual Adversarial Federated Learning on Non-IID Data
    Zhang, Tao
    Yang, Shaojing
    Song, Anxiao
    Li, Guangxia
    Dong, Xuewen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 233 - 246
  • [23] EFL: ELASTIC FEDERATED LEARNING ON NON-IID DATA
    Ma, Zichen
    Lu, Yu
    Li, Wenye
    Cui, Shuguang
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199
  • [24] A Novel Approach for Federated Learning with Non-IID Data
    Nguyen, Hiep
    Warrier, Harikrishna
    Gupta, Yogesh
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 62 - 67
  • [25] StoCFL: A stochastically clustered federated learning framework for Non-IID data with dynamic client participation
    Zeng, Dun
    Hu, Xiangjing
    Liu, Shiyu
    Yu, Yue
    Wang, Qifan
    Xu, Zenglin
    NEURAL NETWORKS, 2025, 187
  • [26] Decoupled Federated Learning for ASR with Non-IID Data
    Zhu, Han
    Wang, Jindong
    Cheng, Gaofeng
    Zhang, Pengyuan
    Yan, Yonghong
    INTERSPEECH 2022, 2022, : 2628 - 2632
  • [27] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [28] Contractible Regularization for Federated Learning on Non-IID Data
    Chen, Zifan
    Wu, Zhe
    Wu, Xian
    Zhang, Li
    Zhao, Jie
    Yan, Yangtian
    Zheng, Yefeng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 61 - 70
  • [29] Optimizing Federated Learning on Non-IID Data with Reinforcement Learning
    Wang, Hao
    Kaplan, Zakhary
    Niu, Di
    Li, Baochun
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1698 - 1707
  • [30] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942