Research on pedestrian object detection algorithm in urban road scenes based on improved YOLOv5

被引:0
|
作者
Liu Z. [1 ]
Wang X. [1 ]
机构
[1] College of Transportation, Shandong University of Science and Technology, Qingdao
来源
关键词
pedestrian object detection; Road traffic safety; YOLOv5;
D O I
10.3233/JIFS-240537
中图分类号
学科分类号
摘要
Pedestrians have random distribution and dynamic characteristics. Aiming to this problem, this paper proposes a pedestrian object detection method based on improved YOLOv5 in urban road scenes. Firstly, the last C3 module was replaced in the Backbone with the SE attention mechanism to enhance the network's extraction of pedestrian object features and improve the detection accuracy of small-scale pedestrians. Secondly, the EIOU loss function was introduced to optimize the object detection performance of the detection network. To validate the effectiveness of the algorithm, experiments were conducted on a dataset composed of filtered Caltech pedestrian detection data and images taken by ourselves. The experiments showed that the improved algorithm has P-value, R-value, and mAP of 98.4%, 95.5%, and 98%, respectively. Compared to the YOLOv5 model, it has increased P-value by 1.4%, R-value by 2.7%, and mAP by 1.3%. The improved algorithm also boosts the detection speed. The detection speed is 0.8 ms faster than the YOLOv5 model. It is also faster than other mainstream algorithms including Faster R-CNN and SSD. The improved algorithm enhances the effectiveness of pedestrian detection significantly and has important application value. © 2024 - IOS Press. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [31] Object Detection for Hazardous Material Vehicles Based on Improved YOLOv5 Algorithm
    Zhu, Pengcheng
    Chen, Bolun
    Liu, Bushi
    Qi, Zifan
    Wang, Shanshan
    Wang, Ling
    ELECTRONICS, 2023, 12 (05)
  • [32] Object Detection Algorithm for Fish Eye Image Based on Improved YOLOv5
    Han, Yanfeng
    Ren, Qi
    Xiao, Ke
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (06): : 29 - 39
  • [33] Research on Improved Mask Detection Method Based on YOLOv5 Algorithm
    Duan, Bichong
    Ma, Mingtao
    Computer Engineering and Applications, 2023, 59 (16) : 223 - 231
  • [34] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [35] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [36] Research on the Charging Socket Detection Algorithm based on Improved YOLOv5
    Chen, Guangmeng
    Lu Sun
    Wang, Muchen
    Wang, Zheng
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 342 - 346
  • [37] An Improved YOLOv5 Method for Small Object Detection in UAV Capture Scenes
    Liu, Zhen
    Gao, Xuehui
    Wan, Yu
    Wang, Jianhao
    Lyu, Hao
    IEEE ACCESS, 2023, 11 : 14365 - 14374
  • [38] YOLOv5-Fog: A Multiobjective Visual Detection Algorithm for Fog Driving Scenes Based on Improved YOLOv5
    Wang, Hai
    Xu, Yansong
    He, Youguo
    Cai, Yingfeng
    Chen, Long
    Li, Yicheng
    Sotelo, Miguel Angel
    Li, Zhixiong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [39] LE-YOLOv5: A Lightweight and Efficient Road Damage Detection Algorithm Based on Improved YOLOv5
    Diao, Zhuo
    Huang, Xianfu
    Liu, Han
    Liu, Zhanwei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [40] Road object detection algorithm based on improved YOLOv5s
    Zhou Qing
    Tan Gong-quan
    Yin Song-lin
    Li Yi-nian
    Wei Dan-qin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (05) : 680 - 690