Research on pedestrian object detection algorithm in urban road scenes based on improved YOLOv5

被引:0
|
作者
Liu Z. [1 ]
Wang X. [1 ]
机构
[1] College of Transportation, Shandong University of Science and Technology, Qingdao
来源
关键词
pedestrian object detection; Road traffic safety; YOLOv5;
D O I
10.3233/JIFS-240537
中图分类号
学科分类号
摘要
Pedestrians have random distribution and dynamic characteristics. Aiming to this problem, this paper proposes a pedestrian object detection method based on improved YOLOv5 in urban road scenes. Firstly, the last C3 module was replaced in the Backbone with the SE attention mechanism to enhance the network's extraction of pedestrian object features and improve the detection accuracy of small-scale pedestrians. Secondly, the EIOU loss function was introduced to optimize the object detection performance of the detection network. To validate the effectiveness of the algorithm, experiments were conducted on a dataset composed of filtered Caltech pedestrian detection data and images taken by ourselves. The experiments showed that the improved algorithm has P-value, R-value, and mAP of 98.4%, 95.5%, and 98%, respectively. Compared to the YOLOv5 model, it has increased P-value by 1.4%, R-value by 2.7%, and mAP by 1.3%. The improved algorithm also boosts the detection speed. The detection speed is 0.8 ms faster than the YOLOv5 model. It is also faster than other mainstream algorithms including Faster R-CNN and SSD. The improved algorithm enhances the effectiveness of pedestrian detection significantly and has important application value. © 2024 - IOS Press. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [21] Lightweight object detection algorithm for robots with improved YOLOv5
    Liu, Gang
    Hu, Yanxin
    Chen, Zhiyu
    Guo, Jianwei
    Ni, Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [22] A Pedestrian Detection Network Model Based on Improved YOLOv5
    Li, Ming-Lun
    Sun, Guo-Bing
    Yu, Jia-Xiang
    ENTROPY, 2023, 25 (02)
  • [23] Improved Pedestrian Fall Detection Model Based on YOLOv5
    Fengl, Yuhua
    Wei, Yi
    Lie, Kejiang
    Feng, Yuandan
    Gan, Zhiqiang
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 410 - 413
  • [24] Object Detection Algorithm of Transmission Lines Based on Improved YOLOv5 Framework
    Zhang, Hao
    Zhou, Xianjun
    Shi, Yike
    Guo, Xuan
    Liu, Hang
    JOURNAL OF SENSORS, 2024, 2024
  • [25] Road Defect Detection Based on Yolov5 Algorithm
    Lei, Yankun
    Wang, Baoping
    Zhang, Nan
    Sun, Qin
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 488 - 493
  • [26] Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image
    Xie, Chunhui
    Wu, Jinming
    Xu, Huaiyu
    Computer Engineering and Applications, 2023, 59 (09) : 198 - 206
  • [27] An Improved Underwater Object Detection Algorithm Based on YOLOv5 for Blurry Images
    Cheng, Liyan
    Zhou, Hui
    Le, Xingni
    Chen, Wanru
    Tao, Hechuan
    Ding, Jiarui
    Wang, Xinru
    Wang, Ruizhi
    Yang, Qunhui
    Chen, Chen
    Kong, Meiwei
    2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC, 2024, : 42 - 47
  • [28] Object Detection Algorithm for Citrus Fruits Based on Improved YOLOv5 Model
    Yu, Yao
    Liu, Yucheng
    Li, Yuanjiang
    Xu, Changsu
    Li, Yunwu
    AGRICULTURE-BASEL, 2024, 14 (10):
  • [29] 3D Object Detection Algorithm Based on Improved YOLOv5
    Sheng Xueqing
    Li Shaobin
    Qu Jinyan
    Liu Liu
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (18)
  • [30] Research on Forest Fire Detection Algorithm Based on Improved YOLOv5
    Li, Jianfeng
    Lian, Xiaoqin
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (03): : 725 - 745